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Results and Discussion

Background Data Processing
The smart manufacturing and Steel 4.0 use The different stages of the ladle’s process are categorized by the “type” of time. These are Performance of LightGBM Based Model
modern technologies to reduce costs and separated into preheat time, empty time, residence time. The empty time indicates the ladle For midpoint temperature, Root of Mean
improve product qua“ty One technology that is has no steel and therefore will rapldly lose heat to the environment. Data was prOV|ded by Squared Error (RMSE) 1S 3OF; For SlOpe, RMSE
having impact on many industries is machine SDI Butler Division and processed using Python and the PyODBC library. is 0.1 °F/min on test dataset. The maximum error
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Machine Learning Model
Objective Our testing found that the LightGBM model was best able to provide results for the accuracy
This work focuses on the quantifiable and robustness. The Smart Ladle program was written in Python using libraries such as
relationships between the casting temperature numpy and py Torch. il
and various factors were developed during the 0005 0005 0004 0002 0000 0002 0004 00
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casting temperature gnd precise adjustme_nts to To ensure that operators have clear access to the Smart Ladle program and all of the inputs slope at the midpoint
steel temperature prior to the ladle reaching the and outputs, a standalone user interface was created in the Unity development Conclusions
casting stage of the production process. environment. Users can enter the target heat number and choose to see a prediction or
view data from past heats. The accuracy of the model has allowed us to
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