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ABSTRACT 

From the BOF/EAF to the caster, the ability to quantify and respond to the variables that affect steel casting temperature is 

crucial for achieving consistent casting quality and maximizing productivity.  Deviations from the optimum steel casting 

temperature can require adjustment to casting speed, which impacts productivity and can also harm product quality.  This work 

will use a deep-learning network to develop quantifiable relationships between the casting temperature and various factors 

during the ladle refining process to enable predictions of casting temperature and precise adjustments to steel temperature prior 

to the ladle reaching the casting stage of the production process. 

INTRODUCTION 

The development of the Smart Ladle focuses on taking data collected from the ladle process and creating history-based 

predictions for ladle heat loss and tundish temperature behavior, then providing these predictions to operators so that they can 

make process decisions with better information.  There are varying approaches to solving this issue, including the approach of 

this work. Operators can only react on information they know; the LMF operator knows to expect additional heat loss in the 

first few heats of a ladle’s campaign, but they may not know about the long wait at the tap car that allowed a well-used ladle 

to cool.  Data collection and presentation gives the operator more knowledge to work with, but still there exist hidden 

correlations between the data.   

 

A key part of modern-day manufacturing across all sectors is the increased implementation of data collection systems and 

software utilities that make use of the collected data.  This is especially true for the steel industry, where the progress of smart 

manufacturing and Steel 4.0 use modern technologies to reduce costs and improve product quality.[1] One such technology 

that is having impact on many industries is machine learning and more recently deep learning.[2][3]   

 

Data usage may be as simple as “gather and display”, giving operators and technicians access to data feeds that help inform 

operations and design.  Collected data can be further used with control systems to improve automation and safety, using data 

feeds to augment process rates or initiate emergency procedures and alarms.  Where these two concepts meet sits deep learning: 

the use of data history, real-time feeds, and “fuzzy-logic” algorithms to create correlations in the data feed that allow for process 

optimization and prediction.    

 

Advancements such as these allow for greater consistency and higher production quality, ensuring that operators have the 

information they need to apply expertise while filling in knowledge gaps with algorithm-based decision making.  In the 

continuous casting process, operator expertise plays a key role in balancing casting parameters using the knowledge of current 

process conditions.  Cast too slowly with low temperatures and you risk clogging, cast too quickly or with high temperatures 

and a breakout may occur.   
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Ladle Process 

Referring to the “ladle process” is in may not be specific enough given the wide variety of logistical and procedural differences 

between different steel manufacturers.   For the initial stages of this work, the ladle process at SDI Butler Division was used 

for testing and development.  The ladle history data mentioned above is gathered from the following stations (roughly in order): 

 Ladle preheating 

 Electric arc furnace (EAF) 

 Ladle metallurgy furnace (LMF) 

 Casting 

 Various ladle maintenance stations 

 

Some ladle processes have alternate stages than the above (such as basic oxygen furnaces in place of EAF or ladle treatment 

stations instead of LMF), and others have additional stations such as vacuum degassing.  The final outcome of this work is to 

create a universal system that can handle these differences while still providing predictions of the ladle thermal behavior.  To 

this end, the machine learning efforts must be organized in such a way as to understand the incoming data semantically (with 

respect to the data’s purpose). 

 

For this work, the different stages of the ladle’s process are categorized by the “type” of time.  These are separated into preheat 

time, wait time, residence time, and maintenance time.  The wait time and maintenance time are considered “empty” time, 

where the ladle has no steel and therefore will rapidly lose heat to the environment.  However, there is a difference between a 

long maintenance time prior to preheat followed by a short wait time at the furnace and the reverse scenario.  Therefore, these 

two “empty” times are treated separately from each other.  Figure 1 below shows a diagram of a ladle’s process and the different 

divisions of time. 

 
Figure 1. Ladle process diagram with different time categories. 

Machine Learning 

Machine learning is a field of computer science that revolves around the use of algorithms with overlapping (or “fuzzy”) 

behavior rather than the discrete behavior found in most computer mathematics.  Machine learning though methods such as 

neural networks (NN) creates those semantic correlations between the data input, finding connections that may not otherwise 

be apparent.  For example, there is an intuitive connection between heat loss in the walls of a ladle and the time that a ladle 

spends empty (empty ladles lose heat to the environment, and there is no steel to provide replacement heat to those walls).  

 

Engineers and technicians can take samples of ladle temperature to observe such a heat loss, and they may also take time 

samples to correlate this heat loss with time.  This, however, requires the engineer to be aware of this correlation beforehand 

to manually make those connections.  Machine learning takes broad swaths of data and examines each input relative to the 

desired outputs.  The end result: correlating weights that describe the influence of each input on those outputs.  These weights 

may be very small as to denote no correlation, or they may be comparatively large and indicate a strong direct connection (as 

in the time vs. heat loss example above). 

 

The use of machine learning requires the proper “pruning” of the data to create a data structure: a properly-formatted 

input/output model for the machine learning algorithm.  The algorithm itself can vary greatly.  Some algorithms may be more 

applicable to short-term data feeds where most relevant data is immediately available. Others function in a way that allows the 



algorithm to “remember” important data over a long history. Selection of an algorithm is as important as the creation of the 

data structure. 

 

Once the algorithm has been prepared and the data put into the desired structure, the algorithm can be “trained” on the data.  

For machine learning, the more data that can be provided the neural network the better the network can learn.  Longer data 

history ensures provides more chances for the data to include non-standard situations.  If the neural network is only provided 

normal data, it will be unable to recognize and make prediction from abnormal inputs.  

APPROACH 

This work uses several assumptions and specific approaches to correlate the available input data to the desired outputs.  

Assessments and studies on the heat loss in ladle systems have been done to identify the major factors that influence the heat 

losses of the ladle and the correlations with tundish temperatures.  Recommendations from industry partners and literature[4][5] 

resulted in a list of “critical parameters”: factors of the refining ladle/casting process that will influence the thermal behavior 

of the ladle and are captured by the data available.  These parameters of ladle history are: 

1. Ladle history – data collected on a per-ladle basis, using the previous three heats of the ladle 

a. Ladle empty time – the time that the ladle has spent empty of steel, specifically between the end of casting 

and the start of preheating. 

b. Ladle preheat time – time spent on the preheating unit. 

c. Ladle steel time – time the ladle spends with liquid steel contact. 

d. Ladle gap time – time between the end of preheating and tapping of steel into the ladle. 

e. No. of heats in the campaign – the number of heat cycles the ladle has experienced since being relined.  The 

first few heats of a new campaign will have different thermal behavior than a well-used ladle. 

2. No. of heats in the sequence – the tundish itself is relined periodically, with the first heat of a new tundish having very 

different behavior 

3. LMF temperature sample – the ladle steel temperature value manually sampled at the LMF 

4. Casting throughput – the casting speed, necessary for predicting time-to-open and making assumptions on the future 

heat’s performance 

5. Tundish steel temperature – temperature samples of the steel temperature in the tundish 

As mentioned earlier, some of the listed data is chosen because it is available.  Previous studies in this field have found 

additional factors that will influence the heat loss in the ladle which are not currently available for usage, including ladle wall 

thickness/erosion, ladle wall temperature values, and the usage of ladle lids.[6][5]  The model as developed can be modified to 

include such information if/when that information is available.  Development of the software was done using Python 3.8 with 

the numpy, scipy, pytorch, and pandas libraries.   For the training phase, a Linux machine with GeForce GTX 950M GPU was 

used. For simulating the SQL database calls that would occur in the production environment Microsoft SQL database, a similar 

MySQL database was built on the Linux machine using XAMPP. After the installation of the ODBC driver and MySQL ODBC 

connector, communication was established between the MySQL database and python program with the Pyodbc library. 

The goal of the model is to make three predictions: 

1. The ladle steel temperature drop between the last temperature measurement at the LMF and the time at which the ladle 

opens at the caster. 

2. The tundish steel temperature at the midpoint of a heat 

3. The slope of the tundish temperature profile after the linear region created by intermixing. 

Providing these three predictions, in addition to providing the operator with quantitative and qualitative information about a 

ladle’s history, will help operators with the decision-making process with regards to ladle steel temperature. 

METHODOLOGY 

Input Data 

The SDI Butler Division in Butler, IN provided the input data for the model development. The collected data features mixed 

sample rates, with most of the data being event-triggered or manually triggered and others collected at fixed periods. The 

industry data was categorized in the following ways: 



Table 1. Industry data used for model development. 

Dataset Description Relevant Data 

EAF Heats Collated data on steel tapped into the 

ladle each heat 

Ladle number, heat number, tap temperature, tap weight, 

time stamps  

Ladle Event Ladle repositioning data that is event-

triggered 

Ladle number, ladle location, time stamps, heat number 

LMF Event Data from the LMF process, event-

triggered 

Ladle number, arcing events, stirring events, ladle steel 

temperature samples, time stamps 

Caster Process Data on casting process and tundish, 

captured every five seconds 

Ladle number, caster number, heat number, tundish steel 

temperature, ladle steel weight, tundish level, casting 

speed 

 

The development of the model used offline copies of the database, with a roughly eight months of data (over 12000 heats) 

exported into a comma-separated format.  After testing and training using the static data was completed, the code was modified 

to access an SQL database directly to read the necessary process data.  This was tested by converting the exported data into a 

local SQL database that mirrored the database of SDI Butler Division and could be accessed for testing the database calls and 

local data analysis. 

The pyodbc library was used to connect a Microsoft SQL database with the python program. After pulling data from the 

necessary tables, the input parameters can be parsed and the data structure prepared. For example, the remaining weight in an 

open ladle and the current throughput at that caster are used to calculate the expected time that the next ladle will be needed at 

that caster. This process checks for certain conditions that would prevent proper prediction. For example, when the specified 

ladle is not in the LMF process, or it does not yet have a temperate sample recorded, the python program would exit with 

comment.  The software will also return an error if the heat currently casting has not been casting for long enough (generally 

at least half-complete). 

Data Structure 

The exported data must be parsed and formatted as inputs to the neural network. The resulting data structure includes 25 input 

factors: time intervals for ladle history, final LMF/tundish temperatures, casting throughput, and current heat data. Before 

feeding the data to neural networks, we must process industry data with normalization. For the purposes of training the 

algorithm, the data was filtered to exclude extreme “non-standard” heats.  These included the first heat of a campaign, the first 

heat after downtimes/outages, and heats with values above/below certain extremes.  This was to ensure that the resulting model 

would be trained using “standard” heats while additional methods for recognizing and processing non-standard heats were 

developed.  

Software Integration 

As the Smart Ladle software will need to work with different systems at different steel production facilities, development of 

the software included consideration for the differences in data security policies that may exist.  Additionally, as the software 

was developed using python, further consideration was given as to the issue of preventing version conflicts and library 

management. As such, the conda environment was chosen for the deployment of the Smart Ladle software at SDI Butler 

Division.  Conda creates a sandboxed virtual environment for the python distribution, as well as featuring a package 

management system that allows for easily installation of necessary python libraries in addition to version management.  As 

such, the only software that needs to be installed on the target machine is the microconda environment, after which a batch 

script can be ran once to setup the necessary python version and libraries.  This prevents the required python installation for 

the Smart Ladle from interfering with/overwriting other python installations. 

 

To maintain this hands-off approach, the software is designed to interface with the Ignition system used by SDI Butler Division 

for their HMI system.  A script was created for Ignition that will pass the necessary information to a batch script (ladle number 

and target caster), then execute the python code.  The python code will then read the SQL database in a read-only configuration, 

process the data and run the algorithm to generate the predictions. The output from this command is then read by the Ignition 

script as an array, allowing it to be incorporated into the SQL database or an HMI panel as needed. 

 



Machine Learning Algorithms 

 
Figure 2. Architecture for Smart Ladle network. 

 

The deep-learning program was developed to read inputs (process data) and provide outputs (ladle and tundish temperature 

predictions). The neural network architecture is demonstrated in Figure 2. It consists of 4 blocks for demonstrating input data 

and the final linear fully connected layer. At each block, we applied a linear layer to extract features, followed by a 1-

Dimensional batch normalization layer and Sigmoid. The batch normalization layer[7] is necessary to reduce internal covariate 

shift and maintain the distribution of the inputs of each layer to produce reliable neural networks. Sigmoid is used to introduce 

nonlinearity to the neural networks. Next, we initiated the weights for each linear layer with Kaiming's method[8] due to the 

consideration of avoiding the vanishing gradient problem and exploding gradient problem. At the final layer, we used the fully 

connected layer to map 32 component features to the last three outputs.  

Linear layer is expressed in following formula, 
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Sigmoid is a simple nonlinear function, 

𝑍𝑚 = (
1
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Kaiming’s Initialization can stabilize the stabilize the covariance of variable distribution, 

var[𝑌𝑚]=var[ ∑ 𝑤𝑙, 𝑚𝑍𝑙

𝑛𝑖𝑛

𝑙=1

]= ∑ var[𝑤𝑙, 𝑚]
1

2
var[𝑋𝑙

𝑛𝑖𝑛

𝑙=1

]=
1

𝑛𝑖𝑛
∑ var[𝑋𝑙

𝑛𝑖𝑛

𝑙=1

] 

 

For the consideration of introducing nonlinearity in neural networks, the activation function plays a critical role. We applied 

the Adam algorithm[9] to reduce our loss function, which is a robust and widely used algorithm to find the minimum. It 

accelerates the process of convergence compared to traditional SGD method. It updates the weights of the whole neural 

networks after computing the gradient for a random sample:  

𝑤 ≔ 𝑤 − η
𝑚

√𝑣 + 𝜖
 

For the loss function, we chose Smooth L1 loss (Huber Loss). Compared with the MSE loss function, it is less sensitive to 

significant errors that characterize MSE. Mainly, in some cases, it could prevent the exploding gradient problem to some 

extent.[10]  Hence, it avoids excessive sensitivity to significant errors that characterize MSE.  
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Table 2 below shows a summary of the parameters for the developed machine learning model. 



 

 

Table 2. Hyper-parameter values of the proposed model. 

Hyper-Parameters Value 

Learning method Adam 

Loss function Smooth L1 loss (Huber loss) 

Activation function Sigmoid 

Linear layer initialization method Kaiming’s method 

Initial weight distribution Normal Distribution 

Batch size 6 

Learning rate 0.005 

Iteration number 10,000 

Linear layer number 5 

Linear layer channel {25×128; 128×128; 128×64; 64×32; 32×3} 

 

Model Outputs 

For the outputs of the neural networks, the target goals are the prediction of the temperature drop between the last LMF 

temperature sample and ladle open, to forecast the tundish temperature at the midpoint of the casting process, and to predict 

the slope of temperature changes in the linear region after intermixing has occurred.  The outputs of the software include an 

array containing the three aforementioned values, as well as history information for the ladle’s current heat and the three prior 

heats. Finally, an additional set of values categorizes these values with respect to a “typical” heat, allowing the operator to see 

both qualitatively and quantitatively the history of the ladle. 

 

Table 3. Output array 

Output Value Description 

Ladle data array Heat #, ladle #, location, # heats in campaign, etc. 

Midpoint temperature prediction Numerical value [°F] 

Midpoint slope prediction Numerical value [°F/s] 

Heat loss (LMF to Caster) Numerical value [°F] 

Ladle history array – Current heat (heat n) Steel time, empty, time, wait time, preheat time 

Ladle history arrays – Previous heats (heat n-1 to n-3) As above 

Ladle history values – Qualitative values Qualitative labels for current heat and three previous 

Comment Comments on special scenarios or errors 

 

The qualitative labeling is done by comparing the current value (e.g. “steel time”) and comparing it to the standard deviation 

for the collection of all “normal” heats in the dataset.  Then, labels are assigned based on this comparison: 

 

Table 4. Qualitative ladle history value labeling. 

Value Comparison Label 

< 𝟏𝝈 Normal 

𝟏𝝈 < 𝒗𝒂𝒍𝒖𝒆 < 𝟐𝝈 Low/High 

> 𝟐𝝈 Very Low/Very High 

 

 

To evaluate the performance of our model, we consider the root of mean square error (RSME) and the mean absolute error 

(MAE) as the error performance measure.   

MSE is computed as follow: 
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MAE is calculated as: 
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Where 𝑦𝑖 , �̂�𝑖 are the actual value and predicted value respectively, N is the number of items in the train-validate dataset. 



 

 

RESULTS AND DISCUSSION 

The developed and trained model was used to make predictions on a partial selection of the overall dataset, allowing the 

predictions to be compared to the known values from the data.  Random heats would be picked and provided to the software 

as inputs in a way matching the production environment. The outputs would then be analyzed and compared to the known 

results from the dataset.  The resulting model shows good correlation with the known data, having an RMSE of 3.73°F for the 

midpoint temperature and 3.42°F for the LMF temperature loss.  The MAE was for both was found to be less than three degrees 

Fahrenheit as well.  The thermocouple accuracy for the data source is +/- 3°F, making the current prediction accuracy 

satisfactory. 

Table 5. Error measurements on the training-validation dataset. 

Measurement 
Temperature at 

mid-point (° F) 

LMF to tundish open 

temperature drop (° F) 

MAE 2.89 2.61 

RMSE 3.73 3.42 

 

   

   
Figure 3. Plots of prediction values versus the actual data. 

 

While the RSME and MAE show good performance, there still exist large outliers as seen in the histogram plots of Figure 4.  

While most cases performed within expected values, some heats show extreme errors of 10°F or more.  Some of the larger 

errors are attributed to heats with abnormal conditions (excessively-large preheat or empty times, for example).  The target 

accuracy for this software is to have few errors above 5°F, meaning more work is needed on identifying and processing 

abnormal cases.  Additionally, work is being done to include other factors that are currently not part of the data processing 

procedure.  These include LMF events such as arcing, stirring, and alloying.   

  
Figure 4. Error histograms for ladle temperature drop prediction (left) and tundish midpoint temperature prediction (right). 



CONCLUSION 

A deep learning software was developed for the purpose of providing ladle furnace operators predictions of ladle and tundish 

temperatures.  The current work focuses on providing information on the heat loss in the ladle between the LMF and the caster 

as well as information on the tundish temperature behavior for that future heat. The model was developed in Python using a set 

of heat data provided by SDI Butler Division. The developed model has a mean absolute error and RMSE close to the accuracy 

of the thermocouples used to take temperature measurements, though extreme outliers exist still.  Further model robustness is 

being developed to include additional data as well as enable the model to handle datasets from other production facilities.  

Finally, work on implementation in LMF operator displays is underway to enable live testing of the model. 
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