Computer Vision Techniques for Improving of Structured Light Vision Systems

Yaan Zhang*, Zhankun Luo*, Jintao Hou*, Lizhe Tan, Xinnian Guo Department of Electrical and Computer Engineering Purdue University Northwest Hammond, IN 46323 August 1, 2020

Outline

Introduction

> Objective

> Theory of single shot and multi-laser emitters

Time division and color division

> Multi-level RANSAC

Experiment result and comparison

Introduction

Configuration

- Laser emitter
 - structured light
- Camera
 - capture image
- Computer
 - post process
- Motivation
 - Single shot, multi-lasers theory
 - Multi-level RANSAC

Motivation and Objective

- Motivation and Objective
 - Height measurement

Coordinate system

- World system
 - world coord.: $M = [X_w; Y_w; Z_w; 1]$
- Camera system
 - camera coord.: $[X_c; Y_c; Z_c]$
- Pixel system
 - pixel coord.: m = [u; v; 1]

Figure 2.3 Transformations from world coordinates to pixel coordinates.

 Y_{c}

0

m(u,v)

M(X,Y,0)

 X_{c}

 Y_{w}

- >Zhang's camera calibration
 - Known variables
 - depth: s
 - pixel coord.: m
 - world coord.: M
 - Calibrated parameters
 - camera intrinsic matrix: A
 - rotation matrix: R
 - translation: t
 - Basic equation: s m = A [R t] M

 X_{μ}

 Z_w

 Z_{c}

- Laser plane calibration (Stage 1)
 - Known variables

• checkerboard plane:
$$\pi_0 = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}^{-T} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- pixel coord.: m = [u; v; 1]
- Intrinsic matrix: A
- Calculated coord.

• camera coord.:
$$M_c = [X_c; Y_c; Z_c], s \equiv Z_c$$

• Relationship:
$$s m = A M_c$$
; $\pi_0^T \cdot \begin{bmatrix} M_c \\ 1 \end{bmatrix} = 0$

- Laser plane calibration (Stage 2)
 - Known variables
 - camera coord.: $M_c = [X_c; Y_c; Z_c]$
 - Calibrated laser plane
 - laser plane: $\pi = [\pi_x; \pi_y; \pi_z]$
 - Equation: $\pi^T \cdot M_c = 1$
 - Method: solve equations with least square method

Height measurement

- Known variables
 - laser plane: π
 - pixel coord.: m = [u; v; 1]
 - Intrinsic matrix: A
 - Extrinsic parameters: R, t
- Calculated coord.
 - camera coord.: $M_c = [X_c; Y_c; Z_c], s \equiv Z_c$
 - world coord.: $M = [X_w; Y_w; Z_w; 1]$
- Relationship: $s m = A M_c$; $\pi^T \cdot M_c = 1$; $M_c[R t] = M$
- Treat average of different Z_w as "Height"

Time division

Time division

Operate laser emitters sequentially

Color division

Color division, using the color threshold algorithm

- Operate laser emitters concurrently
- Distinguish laser plane with color
 - red laser:
 - $-250 \leq R \leq 255$
 - $-G, B \leq 170$
 - green laser:
 - $-230 \leq G \leq 255$
 - $-R,B \leq 220$

Color division

Color division

Sensitive to luminance

Detected red laser / 25ms

Detected green laser / 25ms

Raw image / 5mm

Detected green laser / 5ms

- RANSAC
 - random sample consensus
 - usage: robust fitting in the presence of many data outliers

- Level 1
 - slope given (least square method)
 - offset adjusted

- Level 2
 - slope adjusted

- "best straight line"
 - within distance d

>Multi-level RANSAC

Level 3

Experiment result and comparison

Height measurement of m6

Time division

Color division

Experiment result and comparison

Comparison of results

NORTHWES

Accuracy: Multi-level RANSAC ≈ Color division > Time division

Conclusion

	Time division	Color division	Multi-level RANSAC
Simple operation	Ν	Y	Y
Simple process	Y	Y	Y
Luminance effect	Y	Ν	Y
Accurate	Ν	Y	Y

Conclusion

Conclusion

- Framework for single shot and multi-laser emitters are developed
- Time division and color division approaches are proposed and validated
- Multi-level RANSAC algorithm is further developed using the computer vision techniques
- The experiments demonstrate that developed Multi-level RANSAC algorithm outperforms other approaches: time division and color division.

