# Multi-level Random Sample Consensus Method for Improving Structured Light Vision Systems 

Zhankun Luo, Yaan Zhang, Lizhe Tan<br>Department of Electrical and Computer Engineering Purdue University Northwest

October 27, 2020

## PURDUE <br> U N I V E R S I T Y • <br> NORTHWEST

## Agenda

- Introduction
- Motivation \& Objective
- Theory of multiple shots and multiple laser emitters
- Multi-level RANSAC
- Experiment result and comparison
- Conclusion


## Introduction

## Configuration

- Laser emitter structured light
- Camera capture image
- Computer post process



## Motivation \& Objective

- Motivation
- Multiple shots, multiple lasers theory
- Multi-level RANSAC
- Objective
- Height measurement
- Tackle the intersection points of the multiple laser planes

(a) The schematic of multiple shots, lasers

(b) Experiment configuration


## Theory of multiple shots and multiple laser emitters

Coordinate system

- World system

$$
M=[X, Y, Z]^{T}, \tilde{M}=[X, Y, Z, 1]^{T}
$$

- Camera system

$$
M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{T}
$$

- Pixel system

$$
m=[u, v]^{T}, \tilde{m}=[u, v, 1]^{T}
$$



## Theory of multiple shots and multiple laser emitters

step 1: Zhang's camera calibration

- Basic equation
s $\tilde{m}=A\left[\begin{array}{ll}R & t\end{array}\right] \tilde{M}$
- Known variables
- pixel coordinates $\tilde{m}=[u, v, 1]^{T}$
- world coordinates $\tilde{M}=[X, Y, 0,1]^{T}$ on plane $Z=0$
- Other variable
$\Rightarrow$ depth to pinhole $s=Z_{c}$
- Calibrated parameters
$\downarrow$ camera intrinsic matrix $A=\left[\begin{array}{ccc}\alpha & \gamma & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1\end{array}\right]$
( $u_{0}, v_{0}$ ) the coordinates of the principal point
$\alpha, \beta$ the scale factors in image $u$ and $v$ axes
$\gamma$ the parameter describing the skewness of the two image axes
$\Rightarrow$ extrinsic matrix $\left[\begin{array}{ll}R & t\end{array}\right]=\left[\begin{array}{llll}r_{1,1} & r_{1,2} & r_{1,3} & t_{1} \\ r_{2}, 1 & r_{2}, 2 & r_{2}, 3 & t_{2} \\ r_{3,1} & r_{3,2} & r_{3,3} & t_{3}\end{array}\right]$
$R$ rotation matrix
$t$ translation


## Theory of multiple shots and multiple laser emitters

- step 2: Laser plane calibration (stage 1)
- Basic equations $s \tilde{m}=A M_{c}, \quad \pi_{0}^{T}\left[\begin{array}{c}M_{c} \\ 1\end{array}\right]=0$
- Known variables
- pixel coordinates $\tilde{m}=[u, v, 1]^{T}$
- camera intrinsic matrix $A$
- checkerboard plane $(Z=0) \pi_{0}=\left[\begin{array}{cc}R & t \\ 0^{T} & 1\end{array}\right]^{-T}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$

$$
Z=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \tilde{M}=0 \Longleftrightarrow \pi_{0}^{T}\left[\begin{array}{c}
M_{c} \\
1
\end{array}\right]=0
$$

- Calculated camera coordinates
$\Rightarrow$ depth to pinhole $s=Z_{c}$
$>$ camera coordinates $M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{T}$ for points on intersection of the checkerboard plane \& the laser plane


## Theory of multiple shots and multiple laser emitters

- step 2: Laser plane calibration (stage 2)
- Basic equations

$$
\pi^{T}\left[\begin{array}{c}
M_{c} \\
1
\end{array}\right]=0
$$

- Known variables
- camera coordinates $M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{\top}$ for points on intersection of the checkerboard plane \& the laser plane
- Method
- convert $M_{c}$ for multiple camera systems into the same camera system
$\Rightarrow$ estimate $\pi$ with the least-squares method
- Calibrated parameters
- laser plane $\pi=[a, b, c,-1]^{T}$


## Theory of multiple shots and multiple laser emitters

- step 3: Height measurement
- Basic equations
$s \tilde{m}^{\prime}=A M_{c}^{\prime}, \quad \pi^{T}\left[\begin{array}{c}M_{c}^{\prime} \\ 1\end{array}\right]=0, \quad M_{c}^{\prime}=\left[\begin{array}{ll}R & t\end{array}\right] \tilde{M}^{\prime}=R M^{\prime}+t$
- Known variables
- pixel coordinates $\tilde{m}^{\prime}=\left[u^{\prime}, v^{\prime}, 1\right]^{T}$ for points on intersection of the object surface \& the laser plane
$\Rightarrow$ laser plane $\pi=[a, b, c,-1]^{T}$
$\rightarrow$ camera intrinsic matrix $A$
$\Rightarrow$ extrinsic matrix $\left[\begin{array}{ll}R & t\end{array}\right]$
- Calculated coordinates
- camera coordinates $M_{c}^{\prime}=\left[X_{c}^{\prime}, Y_{c}^{\prime}, Z_{c}^{\prime}\right]^{T}$ for points on intersection of the object surface \& the laser plane
- world coordinates $M^{\prime}=\left[X^{\prime}, Y^{\prime}, Z^{\prime}\right]^{T}$ for points on intersection of the object surface \& the laser plane
- "Height" $H=\frac{1}{N} \sum Z^{\prime}$ average for all the points on intersection of the object surface \& the laser plane


## Multi-level RANSAC

- Multi-level RANSAC
- Objective

Tackle the intersection points of the multiple laser planes

- RANSAC
- random sample consensus
- usage: robust fitting in the presence of many data outliers
- straight line $\omega^{T} \tilde{m}=\omega^{T}[u, v, 1]^{T}=0$, where
$\omega=\left[\lambda_{1}, \lambda_{2}, \lambda_{0}\right]^{T}, \lambda_{1}^{2}+\lambda_{2}^{2}=1$
$>$ inlier: $\left|\omega^{T} \tilde{m}\right| \leq d$, outlier: $\left|\omega^{T} \tilde{m}\right|>d$

(a) RANSAC algorithm
(b) Captured image of two lasers


## Multi-level RANSAC

- Multi-level RANSAC
- Level 1
$\nabla$ initialize $\omega_{0}=\left[\lambda_{10}, \lambda_{20}, \lambda_{30}\right]^{T}$ with the least-squares method for points on intersection of horizontally placed checkerboard \& the laser plane
$\Rightarrow$ fix the slope of line $\left[\lambda_{1}, \lambda_{2}\right]=\left[\lambda_{10}, \lambda_{20}\right]$
$>$ find best offset $\lambda_{0}$, to maximize the number of inliers $\left|\omega^{T} \tilde{m}\right|=\left|\left[\lambda_{10}, \lambda_{20}, \lambda_{0}\right]^{T} \tilde{m}\right| \leq d$



## Multi-level RANSAC

- Multi-level RANSAC
- Level 2
$\checkmark$ randomly choose two points $p_{1}=\left(u_{1}, v_{1}\right), p_{2}=\left(u_{2}, v_{2}\right)$ for $K$ times to make a new line $\omega^{\prime}=\left[\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{0}^{\prime}\right]^{T}$
- ensure the angle $\cos (\Delta \theta)=\left|\vec{n}^{\top} \vec{n}_{0}\right|>$ th btw. the new line \& initial line where the normal vectors $\vec{n}=\left[\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right]^{T}, \vec{n}_{0}=\left[\lambda_{10}, \lambda_{20}\right]^{T}$
$\checkmark$ update $\omega \leftarrow \omega^{\prime}$
if the number of inliers $\left|\omega^{\prime T} \tilde{m}\right| \leq d$ is greater than that of $\omega$



## Multi-level RANSAC

- Multi-level RANSAC
> "best straight line"
$>$ suppose there are $N$ lasers, each laser has
"best straight line" $\omega_{i}, i=1 \cdots N$
$\Rightarrow$ point $p=(u, v), \tilde{m}=[u, v .1]^{T}$ is inlier of i -th laser $\omega_{i}$
if $\left|\omega_{i}^{T} \tilde{m}\right| \leq d$ and $\left|\omega_{j}^{T} \tilde{m}\right|>d$ for all $j \neq i$
$\Rightarrow$ some points are not inlier of any $\omega_{i}$


(a) The "best straight line"


## Multi-level RANSAC

- Multi-level RANSAC
- Level 3
$\checkmark$ for point $p=(u, v)$ that cannot be decided
$\Rightarrow$ distance factor
$i=\operatorname{argmin} d_{i}$, where $d_{i}$ is the shortest distance from $p$ to inliers of $\omega_{i}$
if $\left|d_{j} / d_{i}^{i}\right|>t h$ for all $j \neq i$, then $p$ is inlier of $i$-th laser $\omega_{i}$
$\rightarrow$ direction factor
$i=\operatorname{argmin} \Delta \theta_{i}=\operatorname{argmax} \cos \left(\Delta \theta_{i}\right)$, where $\Delta \theta_{i}$ is the angle formed
from the line segment of $p$ and the nearest inlier of $\omega_{i} \&$ laser $\omega_{i}$ itself

(a) The distance factor

(b) The direction factor


## Experiment result and comparison

- Methods
- Multi-level RANSAC
- single shots, multiple lasers
- multiple shots, multiple lasers
- Time division operate laser emitters sequentially
- Color division operate laser emitters concurrently distinguish laser plane with color:
Red laser $250 \leq R ; G, B \leq 170$ Green laser $230 \leq G ; R, B \leq 220$

(a) Red laser

(b) Green laser


## Experiment result and comparison

## Experiment result

- Multi-level RANSAC
- Time division
- Color division

(a) Multi-level RANSAC

(b) Time division

Worid Coord

(c) Color division

## Experiment result and comparison

- Comparison

Table: Relative errors of time division, color division and multi-level RANSAC

| No. | Time division | Color division | MLRANSAC <br> single camera | MLRANSAC <br> two cameras |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $3.01 \%$ | $6.92 \%$ | $\mathbf{1 . 3 0 \%}$ | $\mathbf{2 . 0 8 \%}$ |
| 2 | $-\mathbf{2 . 0 1 \%}$ | $3.90 \%$ | $-7.41 \%$ | $-3.23 \%$ |
| 3 | $-2.92 \%$ | $\mathbf{1 . 2 0 \%}$ | $-10.13 \%$ | $-6.85 \%$ |
| 4 | $4.20 \%$ | $8.29 \%$ | $4.87 \%$ | $\mathbf{3 . 6 1 \%} \%$ |
| 5 | $-3.82 \%$ | $6.34 \%$ | $-7.43 \%$ | $\mathbf{- 3 . 3 4 \%}$ |
| 6 | $-5.96 \%$ | $3.80 \%$ | $-9.40 \%$ | $\mathbf{- 5 . 1 9 \%}$ |

## Conclusion

- Conclusion
- Framework for multiple shots and multiple laser emitters are developed
- Multi-level RANSAC algorithm is further developed using the computer vision techniques to compare with time division and color division approaches

|  | Time division | Color division | MLRANSAC |
| :---: | :---: | :---: | :---: |
| Simple operation | $\boldsymbol{X}$ | $\checkmark$ | $\checkmark$ |
| Simple process | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Luminance effect | $\checkmark$ | $\boldsymbol{x}$ | $\checkmark$ |
| Accurate | $\boldsymbol{x}$ | $\checkmark$ | $\checkmark$ |

- The experiments demonstrate that the system with multiple cameras and multiple laser emitters using the multi-level RANSAC (MLRANSAC) algorithm improves the accuracy of height measurement over the single camera

