Multi-level Random Sample Consensus Method for Improving Structured Light Vision Systems

Zhankun Luo, Yaan Zhang, Lizhe Tan

Department of Electrical and Computer Engineering Purdue University Northwest

October 27, 2020

MLRANSAC

- Introduction
- Motivation & Objective
- Theory of multiple shots and multiple laser emitters
- Multi-level RANSAC
- Experiment result and comparison
- Conclusion

Motivation & Objective

- Motivation
 - Multiple shots, multiple lasers theory
 - Multi-level RANSAC
- Objective
 - Height measurement
 - Tackle the intersection points of the multiple laser planes

(a) The schematic of multiple shots, lasers

(b) Experiment configuration

step 1: Zhang's camera calibration

- Basic equation
 - $s \tilde{m} = A \begin{bmatrix} R & t \end{bmatrix} \tilde{M}$
- Known variables

• pixel coordinates
$$\tilde{m} = [u, v, 1]^T$$

- world coordinates $\tilde{M} = [X, Y, 0, 1]^T$ on plane Z = 0
- Other variable

• depth to pinhole $s = Z_c$

- Calibrated parameters
 - camera intrinsic matrix A = [α γ μ₀ 0 β κ₀ 0 0 1] (u₀, v₀) the coordinates of the principal point α, β the scale factors in image u and v axes γ the parameter describing the skewness of the two image axes
 extrinsic matrix [R t] = [(1,1,1,2,1,3,1) (7,1,1,2,2,7,3,1) (7,1,1,2,2,7,3,1) (7,1,1,2,2,7,3,1) (7,1,1,2,2,7,3,1) R rotation matrix t translation

step 2: Laser plane calibration (stage 1)

Basic equations

$$s \tilde{m} = A M_c, \quad \pi_0^T \begin{bmatrix} M_c \\ 1 \end{bmatrix} = 0$$

Known variables

- pixel coordinates $\tilde{m} = [u, v, 1]^T$
- camera intrinsic matrix A

• checkerboard plane (Z = 0) $\pi_0 = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}^{-T} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$

$$Z = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \tilde{M} = 0 \Longleftrightarrow \pi_0^T \begin{bmatrix} M_c \\ 1 \end{bmatrix} = 0$$

Calculated camera coordinates

• depth to pinhole $s = Z_c$

► camera coordinates $M_c = [X_c, Y_c, Z_c]^T$ for points on intersection of the checkerboard plane & the laser plane

step 2: Laser plane calibration (stage 2)

- Basic equations
 - $\pi^{T} \begin{bmatrix} M_{c} \\ 1 \end{bmatrix} = 0$
- Known variables
 - ► camera coordinates $M_c = [X_c, Y_c, Z_c]^T$ for points on intersection of the checkerboard plane & the laser plane

Method

 \blacktriangleright convert M_c for multiple camera systems into the same camera system

estimate π with the least-squares method

- Calibrated parameters
 - laser plane $\pi = [a, b, c, -1]^T$

- step 3: Height measurement
 - Basic equations

$$s \ \tilde{m}' = A \ M_c', \quad \pi^T \begin{bmatrix} M_c' \\ 1 \end{bmatrix} = 0, \quad M_c' = \begin{bmatrix} R & t \end{bmatrix} \ \tilde{M}' = RM' + t$$

- Known variables
 - pixel coordinates m
 [u', v', 1]^T for points on intersection of the object surface & the laser plane
 - laser plane $\pi = [a, b, c, -1]^T$
 - camera intrinsic matrix A
 - extrinsic matrix [R t]
- Calculated coordinates
 - camera coordinates M'_c = [X'_c, Y'_c, Z'_c]^T for points on intersection of the object surface & the laser plane
 - ▶ world coordinates M' = [X', Y', Z']^T for points on intersection of the object surface & the laser plane
 - ▶ "Height" $H = \frac{1}{N} \sum Z'$ average for all the points on intersection of the object surface & the laser plane

- Multi-level RANSAC
 - Objective
 - Tackle the intersection points of the multiple laser planes
 - RANSAC
 - random sample consensus
 - usage: robust fitting in the presence of many data outliers
 - ► straight line $\omega^T \tilde{m} = \omega^T [u, v, 1]^T = 0$, where $\omega = [\lambda_1, \lambda_2, \lambda_0]^T, \lambda_1^2 + \lambda_2^2 = 1$
 - inlier: $|\omega^T \tilde{m}| \leq d$, outlier: $|\omega^T \tilde{m}| > d$

Zhankun Luo, Yaan Zhang, Lizhe Tan (Purdu

MLRANSAC

(b) Captured image of two lasers

October 27, 2020

10 / 18

- Multi-level RANSAC
 - Level 1
 - initialize ω₀ = [λ₁₀, λ₂₀, λ₃₀]^T with the least-squares method for points on intersection of horizontally placed checkerboard & the laser plane
 - fix the slope of line $[\lambda_1, \lambda_2] = [\lambda_{10}, \lambda_{20}]$
 - ► find best offset λ_0 , to maximize the number of inliers $|\omega^T \tilde{m}| = |[\lambda_{10}, \lambda_{20}, \lambda_0]^T \tilde{m}| \le d$

Zhankun Luo, Yaan Zhang, Lizhe Tan (Purdu

- Multi-level RANSAC
 - Level 2
 - randomly choose two points p₁ = (u₁, v₁), p₂ = (u₂, v₂) for K times to make a new line ω' = [λ'₁, λ'₂, λ'₀]^T
 - ensure the angle $\cos(\Delta\theta) = |\vec{n}^T \vec{n}_0| > th$ btw. the new line & initial line where the normal vectors $\vec{n} = [\lambda'_1, \lambda'_2]^T$, $\vec{n}_0 = [\lambda_{10}, \lambda_{20}]^T$
 - update $\omega \leftarrow \omega'$ if the number of inliers $|\omega'^T \tilde{m}| \le d$ is greater than that of ω

Zhankun Luo, Yaan Zhang, Lizhe Tan (Purdu

- Multi-level RANSAC
 - Level 3
 - for point p = (u, v) that cannot be decided
 - distance factor
 - $i = \operatorname{argmin} d_i$, where d_i is the shortest distance from p to inliers of ω_i
 - if $|d_j/d_i| > th$ for all $j \neq i$, then p is inlier of i-th laser ω_i
 - direction factor
 - $i = \operatorname{argmin} \Delta \theta_i = \operatorname{argmax} \cos(\Delta \theta_i)$, where $\Delta \theta_i$ is the angle formed

from the line segment of p and the nearest inlier of ω_i & laser ω_i itself

Experiment result and comparison

Methods

- Multi-level RANSAC
 - single shots, multiple lasers
 - multiple shots, multiple lasers
- Time division

operate laser emitters sequentially

Color division

operate laser emitters concurrently

Red laser

a

distinguish laser plane with color:

Red laser 250 \leq R; G, B \leq 170 Green laser 230 \leq G; R, B \leq 220

Zhankun Luo, Yaan Zhang, Lizhe Tan (Purdu

MLRANSAC

Green laser

Experiment result and comparison

Experiment result

- Multi-level RANSAC
- Time division
- Color division

Comparison

Table: Relative errors of time division, color division and multi-level RANSAC

No.	Time division	Color division	MLRANSAC	MLRANSAC
			single camera	two cameras
1	3.01%	6.92%	1.30%	2.08%
2	-2.01%	3.90%	-7.41%	-3.23%
3	-2.92%	1.20%	-10.13%	-6.85%
4	4.20%	8.29%	4.87%	3.61%
5	-3.82%	6.34%	-7.43%	-3.34%
6	-5.96%	3.80%	-9.40%	-5.19%

Conclusion

Conclusion

- Framework for multiple shots and multiple laser emitters are developed
- Multi-level RANSAC algorithm is further developed using the computer vision techniques to compare with time division and color division approaches

	Time division	Color division	MLRANSAC
Simple operation	×	✓	✓
Simple process	1	1	1
Luminance effect	1	×	1
Accurate	×	1	1

The experiments demonstrate that the system with multiple cameras and multiple laser emitters using the multi-level RANSAC (MLRANSAC) algorithm improves the accuracy of height measurement over the single camera