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Abstract—The paper proposes a structured light vision system 

equipped with multi-cameras and multi-laser emitters for object 

height measurement or 3D reconstruction. The proposed method 

offers a better accuracy performance over a single camera system.  

To tackle the intersections produced by laser emitters in the 

projected image plane, we propose a multi-level random sample 

consensus (MLRANSAC) algorithm to separate the intersection 

points instead of using the traditional methods such as time 

division and color division techniques. Our experiments 

demonstrate that the MLRANSAC algorithm can perform 

effectively. 
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I. INTRODUCTION 

Nowadays, structured light systems are widely utilized in 

computer vision for 3D reconstruction procedures [1]-[3]. 

Since the line structured light vision system offers high 

precision and anti-interference capability, it has also been 

selected as an effective measurement method in many industrial 

applications, including robotics, machine inspection, autopilot, 

architecture, archaeology, agriculture [4]-[9] and Mars 

exploration [10]-[12]. Furthermore, laser emitters [13]-[16] 

consisting of beam laser lines and projectors [17]-[19] with 

encoded patterns are frequently used as light sources to employ 

their geometric characteristics.  

Conventionally, a vision system with a beam source and a 

camera installed at various angles gives sufficient information 

for an essential 3D reconstruction [20]. A typical technique 

favors parallel lines [4] rather than crossings in the projected 

patterns to evade image processing difficulties. For instance, a 

laser-scanned scheme applies one single laser line at a time. It 

later reconstructs the shape by transferring the object along with 

a specific orientation [13] or turning the system along with a 

fixed point [3], [7]. For projector systems, the gray-code pattern 

[15], [17], is broadly employed with the time-domain encode 

method. The projector system assigns a gray-code sequence for 

each pixel’s position by repeatedly posting patterns with white 

and black bands. Then it applies the square dots as a post pattern 

in the projector system [18].  

Nevertheless, in the circumstances where the crossing 

emitting lines are applied, the conventional method may not 

conduct well the 3D-reconstruction owing to the vagueness of 

labeling points around the crossing points [21]-[24]. In this 

study, we tackle the crossing line pattern in a structured light 

system using multiple laser emitters and numerous cameras 

similar to [25]. We derive a framework for the structured light 

vision system with multiple cameras and multiple laser emitters. 

Then we propose a multi-level RANSAC (MLRANSAC) 

algorithm to classify the unlabeled laser projected points into 

different sets effectively. Eventually, we validate the proposed 

methods. The paper’s significant contributions are: (1) deriving 

a framework for multiple laser emitters and multiple cameras; 

and (2) applying multi-level RANSAC algorithm to separate 

intersection points. Finally, we adopt additional multiple 

cameras to improve the measurement accuracy over the 

recently developed system [26]. 

II. STRUCTURED LIGHT VISION SYSTEM WITH MULTIPLE 

LASER EMITTERS AND MULTIPLE CAMERAS 

Fig. 1 displays our measurement scheme. It consists of N 

laser emitters with red, green, and other options, a processing 

platform and M high-resolution cameras. As presented in Fig. 

1, the camera coordinate and world coordinate and are denoted 

by ck ck ck cko x y z 1,2, ,k M and oxyz . Notice that the 

equation: 0z   gives the horizontal level in the world 

coordinate. We assume that the triangular plane’s projection on 

the plane of 0z   exists and can be taken by cameras. 

 

   
Fig. 1. Height measurement system. 

A. Measurement Methods 

In our study, we employ the camera pinhole model. We can 

formulate a perspective projection for camera k as below: 
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For conciseness of illustration, we define
 

( )TX x y z  - the point in the world coordinate;
 

( 1)TX x y z -  the variant form of X ; 

( )T

ck ck ck ckX x y z - the point in the kth camera coordinate; 

( 1)T

ck ck ck ckX x y z - the variant form of ckX ; 

( )T

pk k k
I u v -  the point in the image pixel coordinate from 

the kth camera; and 

( 1)T

pk k kI u v : the variant form of  pkI . 

Here is the intrinsic matrix kA , in the form of below: 
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where for camera k: k and k  are the scaling factors between 

camera coordinates and pixel coordinates in x and y axes. 

Moreover, 0ku and 0kv  are the image coordinates 

corresponding to the optical axis.  The kc  is the skewness in for 

two image axes. This

 

1 2 3[ ] [ ]k k k k k k
R t r r r t  denotes 

the rotation and translation connecting the camera coordinates 

and the world coordinates. 

For each characteristic j-th point on the i-th laser plane, 

namely formed by the i-th laser emitter, it can be expressed as 

   ( , ) ( ( , ) ( , ) ( , ) 1)T

cLk cLk cLk cLkX i j x i j y i j z i j
 

and the i-th laser plane is designated by     

   
( 1)T

i i i ia b c    .
 

We can derive the following equation based on basic formulas: 

 1( , ) / ( , ) ( , )cLk ck k pkX i j z i j A I i j  (4) 

 ( , ) 0i cLkX i j  ,    1,2, ,j J   (5) 

For the given projected point ( , )pkI i j  and equation (4), we can 

achieve 

 ( , ) / ( , ) ( , ) / ( , ) ( , ) / ( , ) 1cLk cLk cLk cLk cLk cLkX i j z i j x i j z i j y i j z i j (6) 

With the calibrated triangular plane i, and (5), we can 

eventually produce 

 ( , ) 1/( ( , ) / ( ,) ( , ) / ( , ) )cLk i cLk cLk i cLk cLk iz i j a x i j z i b y i j z i j c  

  (7)
 

From (1), ( , ) ( , )ck cLkX i j X i j  can be achieved. Finally, we 

obtain 
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With the calibrated intrinsic and extrinsic parameters and all the 

laser planes, we can apply our developed multi-level RANSAC 

(MLRANSAC) algorithm to perform the 3D reconstruction. 

B. Calibration 

We model the camera after Zhang’s method [23], where the 

pixel coordinates and the world coordinates are represented by

( 1)Tm u v ( 1)TM x y z . Using a pinhole camera 

model, there is a connection between pixel coordinates and the 

world coordinates. 

 1 2 3[ ] [ ]k k k k k k k ksm A R t M A r r r t M    (9) 

Assuming  0z   (floor plane) in the model, (9) becomes  

 
1 2[ ]k k k ksm A r r t M   (10) 

where s is the depth to the camera pinhole and  

( 1)TM x y .  The effective methodology for solving an 

intrinsic matrix A and extrinsic parameters (10) can be found 

in [23].  

 Each triangular plane  1i i i ia b c   required in (5) 

1,2, ,i N  is calibrated independently. As shown in Fig. 1, 

set the floor plane 0z   in the world coordinate to be

(0 0 1 0)T . We can derive the floor plane to the camera 

coordinate as 
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The projected j-th image points ( , )ckX i j  must be on the plane 

of the checkerboard in the camera coordinates during 

calibration, namely, 

 0 ( , ) 0 for 1,2, ,T

k ckX i j j J             (12) 

In other words, we can write it as such a form 

 
( , )[ ( , ) / ( , ) ( , ) / ( , ) ]

for 1,2, ,

ck k ck ck k c ck k kz i j A x i j z i j B y i j z i j C D

j J

   


   (13)

 

Notice that ( , ) / ( , )ck ckx i j z i j  and ( , ) / ( , )ck cky i j z i j in (13) can 

be calculated via the projected pixel points, namely, 

         
1( , ) / ( , ) ( , )) for 1,2, ,ck ck k pkX i j z i j A I i j j J        (14)

 

Then we can obtain ( , )ckz i j  in the camera coordinate with 

(13). Eventually, we can compute characteristic points in the 

following way. 

 1( , ) ( , ) ( , ) ( , )cLk ck ck k pX i j X i j z i j A I i j      (15) 

Thus the characteristic points are known for each triangular 

laser plane  1ik ik ik ika b c    , namely, 

 ( , ) 0ik cLkX i j  , 1,2, ,j J    (16) 

and with M  trials for different checkerboard orientations on 

the floor plane at 0z  , we have: 



 

 
( , ) 0.ik cLk mX i j  , 1,2, ,j J , 1,2, ,m M            (17) 

Finally, we apply the least-squares method to solve the i-th 

triangular plane, namely,  1i i i ia b c   . 

III. MULTI-LEVEL RANDOM SAMPLE CONSENSUS ALGORITHM  

For the scenario where multiple cameras and laser emitters 

are used, one of the difficult tasks is to classify the intersection 

points in the image projection to their corresponding triangular 

planes. The time-division and color division can be used. Still, 

time-division processing is slow since it operates for each laser 

emitter one at a time while the color division requires the 

emitters with different light color sources, usually red, green, 

and blue light sources. Besides, the color division is sensitive 

to the illuminance environment during the measurement.  The 

multi-level RANSAC (MLRANSAC) algorithm is an effective 

alternative [26]. 

 During the operation stage, the projected points from the i-th 

laser emitter on the checkerboard at z=0 are extracted. The 

least-squares method can be utilized to find its linear model,

1 2 0( ( ) ( ) ( ))T

i i i i     subject to the plane equation

( ( ) ( ) 1) 0T

i u j v j 
 
. For the stage at level 1, we choose K

points randomly from the elicited point set. The normal vector 

is used to initialize the slope of the linear fitting model. We 

calculate K linear trial equations as the following equation: 

 0 1 2( ) ( ( ) ( ) )k kk i u i v     , 1,2, ,k K   (18) 

Then we determine the number of points within the maximum 

allowable distance d . The selected line equation is the 

equation composes of the maximum number of points, namely, 

 1 2 0( ( ) ( ) ( ))T

i i i i     , 1,2, ,i N    (19) 

Fig. 2 depicts the scenario for the case of 2N  . 
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Fig. 2. The first level of MLRANSAC algorithm. 

 

Besides, we begin to treat (19) as the “best straight line,” 

drawing the intersection of the i-th laser emitter. 2 sample 

points are randomly selected from the K  point set to 

recalculate a new straight line. Using all the received straight 

lines to show the following test on all the extracted points. In 

the case of that the distance from a test point to the straight line 

is less than d , then we consider, the test point is on the laser 

plane and add it to the point set corresponding to the laser plane. 

The total number of points in the laser set related to the line 

could be greater than that of  the “best straight line.” Moreover, 

the angle between the initial one and the straight line in (19) 

within a specific threshold. Then the “best straight line” is 

updated by the current straight line. After iteration for K times, 

the final line equation is obtained. Repeating the same process 

for N  laser planes, we obtain the final N  projected equations 

and N  sets of the projected points. Figs. 2-4 show the case of 

2N  . 

Eventually, there could still be some points that cannot be 

decided on a specific laser plane they are on (see Fig. 5). The 

distance factor and direction factor are introduced at level 3. 

The distance factor is a distance ratio (
1 2/d d ) for the 

undecided point. 𝑑1 is a distance from the undecided point to 

the specific laser intersection (for example, red), while 𝑑2 is the 

distance between the undecided point and the other laser 

intersection (for example, green). In the case of that the distance 

factor is greater than a certain threshold, then we classify the 

undecided point to this specific laser point set. Fig. 6 describes 

the case of 2N  . 
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Fig. 3. The second level of MLRANSAC algorithm. 
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Fig. 4. The “best straight line." 
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Fig. 5. Some points that cannot be decided to which laser emitters. 
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Fig. 6. The distance factor. 

 

The direction factor is defined as the cosine angle value 

cos(∆𝜃) between two directions as shown in Fig. 7, in which 

the angle is formed from the line segment of the undecided 

point and the nearest point in the specific laser set and the 

specific laser projected line. The undecided point is classified 

as the one laser point set if the direction factor is closer to one 

among the other laser point sets, as shown in Fig. 7 the case of

2N  . 
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Fig. 7. The direction factor. 

IV. EXPERIMENTS AND PROCESSING  

The designed measurement system includes, red and green 

laser emitters [27], 9 * 10 square checkerboard, a processing 

platform and two high-resolution cameras (Basler acA2500-

14gc GigE camera with ON Semiconductor MT9P031 CMOS 

sensor, 14 frames per second, 5MP resolution). We used two 

laser emitters to conduct experiments. The system setup we 

used for the measurement is shown in Fig. 8. 

 
Fig. 8. Proposed structured-light measurement system. 

 

A.  System Calibration Results 

 With the help of MATLAB Camera Calibration toolbox, 

both extrinsic parameters [ ]R t  and intrinsic matrix A  for 

the cameras are computed based on Zhang’s methodology [23]. 

The calibrated parameters for one camera are shown in (20).  
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 From the checkerboard images generated by the sequential 

laser emitter projections, two planes obtained as following: 
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B.  Height Measurement and Results 

Fig. 9 show the object used for height measurement using our 

structured light vision system. The object is placed on the 

operating table during the measurement. We obtain six groups 

of object images, each group consisting of three pictures. Fig. 9 

displays the images labeled from m1 to m6 from two laser 

emitters. 

         
m1                             m2                             m3 

         
m4                          m5                      m6 

Fig. 9 Measurement for m1 to m6. 

 

The height measurement results two cameras and two laser 

emitters are listed in Table 1, while Tables 2 includes the worst 

results from the single camera and two laser emitters. The first 

column in Tables 1 and 2 are the actual heights via physical 

measurements; meanwhile, the heights measured with multi-

level RANSAC algorithm are presented in the second column 

of Tables 1 and 2. The MLRANSAC algorithm has 3.65% 

obtained from averaging the relative errors from the six objects. 

It clear that the multiple camera and multiple laser emitter 

system outperforms the system equipped with a single camera 



 

and multiple laser emitters. In Table 3, we compare the obtained 

results using the multi-level RANSAC algorithm with existing 

methods, that is, time division and color division [26]. The 

MLRANSAC algorithm outcompetes for most measurements. 

 

Table 1 Multi-level RANSAC algorithm with two cameras 

Measurement 

Number 

Actual 

height / 

mm 

Measure 

height / mm 

Absolute 

error / mm 

Relative 

error / % 

1 6.700  6.839  0.139  2.08% 

2 12.800  12.386  0.414  -3.23% 

3 19.500  18.165  1.335  -6.85% 

4 6.700  6.942  0.242  3.61% 

5 12.800  12.373  0.427  -3.34% 

6 19.500  18.488  1.012  -5.19% 

 

Table 2 Multi-level RANSAC algorithm with a single camera  

Measurement 

Number 

Actual 

height / mm 

Measure 

height / mm 

Absolute 

error / mm 

Relative 

error / % 

1 6.700  6.787  0.087  1.30% 

2 12.800  11.851  0.949  -7.41% 

3 19.500  17.524  1.976  -10.13% 

4 6.700  7.027  0.327  4.87% 

5 12.800  11.849  0.951  -7.43% 

6 19.500  17.666  1.834  -9.40% 

 

Table 3 Comparison among time division, color division, and 

multi-level RANSAC algorithm  

Measurement / 

Relative  error 

Time 

division 

Color 

division 

MLRANSAC 

single camera 

MLRANSAC 

two cameras 

1 3.01% 6.92% 1.30% 2.08% 

2 -2.01% 3.90% -7.41% -3.23% 

3 -2.92% 1.20% -10.13% -6.85% 

4 4.20% 8.29% 4.87% 3.61% 

5 -3.82% 6.34% -7.43% -3.34% 

6 -5.96% 3.80% -9.40% -5.19% 

 

C.  3D Reconstruction Results 

Fig. 10 displays 3D reconstructions for one of our tested objects 

using our proposed method. 

 

Fig. 10. 3D reconstruction of m6 with the MLRANSAC algorithm. 

V. CONCLUSIONS 

In this paper, we have derived a framework for 3D 

reconstruction and object height measurement using multiple 

cameras and multiple laser emitters. We have developed a new 

multi-level random sample consensus (MLRANSAC) 

algorithm to tackle the intersection points on the projected 

image plane due to the multi-laser emitters. Our experiments 

demonstrate that the system with multiple cameras and multiple 

laser emitters using the multi-level RANSAC (MLRANSAC) 

algorithm improves the accuracy of height measurement over 

the single camera. In future work, we will compare 3D 

reconstruction error among our method and other approaches; 

especially, the method with cameras only will be compared 

later. 
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