
STRUCTURED LIGHT VISION SYSTEMS USING A ROBUST
LASER STRIPE SEGMENTATION METHOD

by

Zhankun Luo

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering at Purdue Northwest

Hammond, Indiana

May 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Lizhe Tan, Chair

Department of Electrical and Computer Engineering

Dr. Khair Al Shamaileh

Department of Electrical and Computer Engineering

Dr. Colin Elkin

Department of Electrical and Computer Engineering

Approved by:

Dr. Vijay Devabhaktuni

2



This thesis is dedicated to my parents

3



ACKNOWLEDGMENTS

Firstly, I would like to express my deep gratitude and appreciation to my academic

advisor Dr. Lizhe Tan for all his constructive instruction and valuable advice during the

research at Purdue University Northwest.

I would also like to extend my thanks to my parents, uncle, and host family for their

consistent support and encouragement while studying abroad.

Furthermore, I sincerely appreciate the help from my friends, Liming Wu, Yaan Zhang,

Jintao Hou, and Changshi Yang. They provide warm-hearted help on my career and life

constantly.

In addition, I am truly grateful to Dr. Bin Chen, Dr. Sidike Paheding, and Dr. Weihua

Ruan for their valuable suggestions on my research and study, and especially to Dr. Chenn

Zhou for her funding of my being a research assistant at the Center for Innovation through

Visualization and Simulation (CIVS).

Last but not least, I would like to thank the other committee member, Dr. Khair Al

Shamaileh and Dr. Colin Elkin for their participation and helpful comments.

4



TABLE OF CONTENTS

 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 ABBREVIATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 1.2 Motivation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 1.3 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 2.1.1 Rigid body transformation  . . . . . . . . . . . . . . . . . . . . . . . . 16

 2.1.2 Normalization and distortion correction . . . . . . . . . . . . . . . . . 17

 2.1.3 Perspective projection  . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 2.1.4 Image digitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 2.1.5 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

 2.2 Zhengyou Zhang’s Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 2.2.1 Estimation of homography H  . . . . . . . . . . . . . . . . . . . . . . 20

 2.2.2 Estimation of intrinsic camera matrix A . . . . . . . . . . . . . . . . 22

 2.2.3 Estimation of extrinsic camera parameters R, t . . . . . . . . . . . . . 25

 2.2.4 Estimation of camera lens distortion parameters k1, k2  . . . . . . . . 26

 2.2.5 Non-linear refinement for all parameters . . . . . . . . . . . . . . . . 27

 2.3 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 2.3.1 The expression of the 3D point M  . . . . . . . . . . . . . . . . . . . . 28

 2.3.2 The other expression of M with cross product . . . . . . . . . . . . . 30

5



 2.4 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

 2.4.1 Architecture of U-Net: encoder and decoder . . . . . . . . . . . . . . 30

 2.4.2 Optimization method . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

 2.4.3 Criterion for loss function . . . . . . . . . . . . . . . . . . . . . . . . 33

 2.4.4 Metrics of evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

 3.1 Structured light vision system with multiple laser emitters and multiple cameras 36

 3.1.1 Measurement method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 3.1.2 Calibration of the laser plane π . . . . . . . . . . . . . . . . . . . . . 38

 3.2 Training process of neural networks . . . . . . . . . . . . . . . . . . . . . . . 41

 3.3 Post processing of image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 3.3.1 Converting RGB images to grayscale images . . . . . . . . . . . . . . 41

 3.3.2 Adaptive contrast enhancement . . . . . . . . . . . . . . . . . . . . . 42

 3.3.3 Binarization and morphological operation  . . . . . . . . . . . . . . . 43

 3.3.4 Extracting laser stripe centers . . . . . . . . . . . . . . . . . . . . . . 44

 3.4 Accuracy evaluation of structured light vision system . . . . . . . . . . . . . 45

 4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 4.1 Experiment platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 4.2 Result of metrics for neural networks . . . . . . . . . . . . . . . . . . . . . . 47

 4.3 Result of measurement evaluation . . . . . . . . . . . . . . . . . . . . . . . . 49

 4.3.1 System calibration results . . . . . . . . . . . . . . . . . . . . . . . . 49

 4.3.2 Segmentation results  . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

 4.3.3 Comparison with segmentation results using Watershed . . . . . . . . 51

 4.3.4 Height measurement results . . . . . . . . . . . . . . . . . . . . . . . 53

 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

 VITA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6



 PUBLICATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7



LIST OF TABLES

 2.1 Symbol table for pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . 15

 2.2 Symbol table for triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 3.1 Symbol table for the structured light system  . . . . . . . . . . . . . . . . . . . . 36

 4.1 The metrics for neural metworks. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

 4.2 Table of measurement error for the structured light system with U-Net . . . . . 56

 4.3 Table of measurement error for the structured light system without U-Net . . . 56

 4.4 Table of measurement error for the structured light system with two cameras . . 57

 4.5 Table of measurement error for the structured light system with a single camera  57

8



LIST OF FIGURES

 2.1 Transformations from world coordinates to pixel coordinates. . . . . . . . . . . . 15

 2.2 Rigid body transformation from world coordinates to camera coordinates. . . . . 16

 2.3 Distortion between ideal normalized image coordinates and real normalized image
coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 2.4 Perspective projection from real normalized image coordinates to real image co-
ordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 2.5 Image digitalization from real image coordinates to pixel coordinates.  . . . . . . 18

 2.6 U-Net Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

 3.1 Height measurement system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

 3.2 The learning rate η during training. . . . . . . . . . . . . . . . . . . . . . . . . . 41

 4.1 Proposed structured-light measurement system.  . . . . . . . . . . . . . . . . . . 46

 4.2 The dice coefficient on test dataset during training. . . . . . . . . . . . . . . . . 47

 4.3 The values of loss function during training.  . . . . . . . . . . . . . . . . . . . . . 47

 4.4 A example image, its corresponding generated mask and the masked image. . . 48

 4.5 A input image, its predicted mask and the ground truth mask. . . . . . . . . . . 48

 4.6 Measurements for m1 to m6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

 4.7 Masks for m1 to m6.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

 4.8 Extracted laser stripes for m1 to m6. . . . . . . . . . . . . . . . . . . . . . . . . 51

 4.9 Segmentation with Watershed for m1 to m6. . . . . . . . . . . . . . . . . . . . . 52

 4.10 Watershed images with morphological operations for m1 to m6. . . . . . . . . . 52

 4.11 Extracted laser strip centers with U-Net method for m1 to m6.  . . . . . . . . . . 53

 4.12 Extracted laser strip centers without U-Net method for m1 to m6. . . . . . . . . 53

 4.13 Extracted laser strip centers with U-Net method for m1 to m6.  . . . . . . . . . . 54

 4.14 Extracted laser strip centers without U-Net method for m1 to m6. . . . . . . . . 55

9



LIST OF SYMBOLS

A camera intrinsic matrix

R extrinsic parameter: rotation matrix from camera coordinates to world co-

ordinates

t extrinsic parameter: translation from camera coordinates to world coordi-

nates

X = (x y z)T the point in the world coordinate

X̄ = (x y z 1)T the homogeneous form of X

Xck = (xck yck zck)T the point in the k-th camera coordinate

X̄ck = (xck yck zck 1)T the homogeneous form of Xck

Ipk = (uk vk)T the point in the pixel coordinate from the k-th camera

Īpk = (uk vk 1)T the homogeneous form of Ipk

10



ABBREVIATIONS

3D Three dimensional

CCD Charge-coupled Device

SSD Solid State Drive

RANSAC Random Sample Consensus

MLRANSAC Multi-Level Random Sample Consensus

AI Artificial Intelligence

CNN Convolutional Neural Network

GPU Graphic Processing Unit

MLP Multi-Layer Perceptron

FCN Fully Convolutional Networks

BP Back propagation

BCELoss Binary Cross Entropy Loss

SGD Stochastic Gradient Descent

Adam Adaptive moment estimation

IoU Intersection over Union

11



ABSTRACT

In thesis, we propose a structured light vision system equipped with multi-cameras and

multi-laser emitters for object height measurement or 3D reconstruction. The proposed

method offers a better accuracy performance over a single camera system. The structured

light method may fail the interference of reflection and scattering of light. We use U-Net to

extract the laser region, obtain the laser stripe center after erosion and dilation, and finally

reconstruct the point cloud corresponding to the laser stripe. Our experiments demonstrate

that our structured light system with the U-Net can perform effectively and robustly in a

complex environment.
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1. INTRODUCTION

1.1 Literature Review

Today, structured light systems are widely utilized in computer vision for 3D reconstruc-

tion[ 1 ]–[ 3 ]. Due to the high accuracy and efficiency, people usually chose the structured

light vision systems for various industrial applications, including robotics, mechanical fault

detection, autonomous driving, architecture, archaeology, agriculture [ 4 ]–[ 10 ] and Mars ex-

ploration [ 11 ]–[ 13 ]. Besides, it can be used to predict phenotyping features in the target

plants [ 14 ], reconstruct sub-surface 3D depth images [ 9 ] and curve welding seam [ 15 ], [ 16 ].

Traditionally, a vision system with beam sources and cameras installed at different view-

points can provide enough information for a basic 3D reconstruction [  17 ]. Typically, a vision

system with multiple beam sources and cameras installed at different angles can provide

accurate information for 3D reconstruction [ 17 ], [ 18 ]. In addition, laser emitters consisting

of beam laser lines and projectors with encoded patterns [ 2 ], [ 19 ], [ 20 ] are also frequently

used to perform 3D reconstructions.

1.2 Motivation

Nevertheless, the structured light system could be affected by the inference of reflection

and scattering under complex scenarios. U-Net is a type of neural network that was firstly

proposed for biomedical image segmentation task [ 21 ]. This network could be utilized to

filter out the image corruption caused by reflection and scattering of light.

1.3 Thesis Scope

In this study, we eliminate the effect of reflective noise in the background for a structured

light system using multiple laser emitters and numerous cameras similar to [  22 ]. Eventu-

ally, we validate the proposed methods. The important contributions of this project are the

derivation of a framework with multiple laser emitters and multiple cameras, and the pro-

posed method to extract laser regions with reflective interference in complex environments

13



using U-Net. Finally, we adopt multiple cameras to improve the measurement accuracy over

the recently developed system [ 23 ].
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2. BACKGROUND

2.1 Pinhole Camera Model

The pinhole camera model represents the transformation from world coordinates to pixel

coordinates (see Fig.  2.1 ). We define the corresponding symbols in Table  2.1 .

Figure 2.1. Transformations from world coordinates to pixel coordinates.

Table 2.1. Symbol table for pinhole camera model
symbol definition
(x y z)T the world coordinates

(xc yc zc)T the camera coordinates
(xu yu)T the ideal normalized image coordinates
(x̆ y̆)T the distorted real normalized image coordinates

(xd yd)T the distorted real image coordinates
(u v)T the pixel coordinates
f the focal length

k1, k2 the parameters of radial distortion
dx, dy the physical scales for pixel on x, y axes
u0, v0 the pixel coordinates of pinhole
θ the skewed angle between x, y axes of the pixel coordinates

15



2.1.1 Rigid body transformation

We denote the rotation matrix and translation between the world coordinates (x y z)T

and the camera coordinates (xc yc zc)T as R, t.

Figure 2.2. Rigid body transformation from world coordinates to camera coordinates.

The rigid body transformation from the world coordinates (x y z)T to the camera coor-

dinates (xc yc zc)T can be given by:


xc

yc

zc

 = R


x

y

z

+ t,



xc

yc

zc

1


=

 R t

0T3 1




x

y

x

1


(2.1)
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2.1.2 Normalization and distortion correction

(xu yu)T the ideal normalized image coordinates are defined as below.


xu

yu

1

 = 1
zc


xc

yc

zc

 (2.2)

Figure 2.3. Distortion between ideal normalized image coordinates and real
normalized image coordinates

Here, if we only consider the radial distortion, the distorted real normalized image coor-

dinates (x̆ y̆)T can be computed as follows.

 x̆

y̆

 =
(
1 + k1r

2 + k2r
4
) xu

yu

 , r =
√
x2
u + y2

u (2.3)

2.1.3 Perspective projection

The perspective projection from the real normalized image coordinates (xc yc zc)T to the

real image coordinates (xu yu)T can be given by:

 xd

yd

 = f

 x̆

y̆

 (2.4)
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Figure 2.4. Perspective projection from real normalized image coordinates to
real image coordinates.

2.1.4 Image digitalization

Image digitization is the process of converting real image coordinates into pixel coordi-

nates (see Fig.  2.5 ). 
u

v

1

 =


1
dx
− 1
dx tan θ u0

0 1
dy sin θ v0

0 0 1




xd

yd

1

 (2.5)

Figure 2.5. Image digitalization from real image coordinates to pixel coordinates.
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The formula above describes the image digitalization from real image coordinates to

pixel coordinates. Here k1, k2 indicate the parameters of radial distortion, dx, dy represent

the physical scales for pixel on x, y axes, u0, v0 define the pixel coordinates of pinhole, θ is

the skewed angle between x, y axes of the pixel.

2.1.5 Summary

It has been shown that we can describe the pinhole camera model with following formulas


xc

yc

zc

 =
(
R t

)


x

y

x

1



x̆

y̆

1

 = 1
zc


1 + k1r

2 + k2r
4 0 0

0 1 + k1r
2 + k2r

4 0

0 0 1




xc

yc

zc

 , r2 =
(
xc
zc

)2
+
(
yc
zc

)2


u

v

1

 =


f
dx
− f
dx tan θ u0

0 f
dy sin θ v0

0 0 1




x̆

y̆

1


(2.6)

The intrinsic matrix A for camera is defined below, where α and β are the scaling factors

between camera coordinates and pixel coordinates in x and y axes, c is the skewness in for

two image axes.

A =


α c u0

0 β v0

0 0 1

 =


f
dx
− f
dx tan θ u0

0 f
dy sin θ v0

0 0 1

 (2.7)

Furthermore, the rotation matrixR and the translation t indicate the extrinsic parameters

between the world coordinates and the camera coordinates. In the meantime, k1, k2 represent

the parameters of radial distortion for the camera lens.
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2.2 Zhengyou Zhang’s Calibration

The camera is calibrated using Zhang’s method [ 24 ], where the basic equation are written

as follows when the distortion of camera lens is neglected, where ri is the i-th column of

rotation matrix.

s


u

v

1

 = A (R t)



x

y

z

1


= A (r1 r2 r3 t)



x

y

z

1


(2.8)

Because z of the points on the checkerboard are always 0, the equation is simplified

as follows. Here m̃ is the homogeneous form of the pixel coordinates (u v 1)T , M̃ is the

homogeneous form of the world coordinates (x y 1)T , and s indicates the depth to the

camera pinhole, i.e. zc in the pinhole model.

sm̃ = A (R t) M̃ = A (r1 r2 t) M̃ (2.9)

2.2.1 Estimation of homography H

Let’s suppose that there are N points on the z = 0 plane of world coordinates. Let’s

denote the pixel coordinate set of N points as U = (m̃1, . . . , m̃N), and the world coordinate

set as X =
(
M̃1, . . . , M̃N

)
. There is a relationship between the m̃k and M̃k related to the

homography matrix H.

m̃k = 1
(h31 h32 h33) · M̃k

HM̃k, H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 = λA (r1 r2 t) (2.10)

Note that λ is an arbitrary nonzero number.
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To improve the numerical stability of the computation of homography H, we normalize

U ,X for preprocessing.

X ′ = normalize(X ) =
(
NX · M̃1, . . . , NX · M̃N

)
=
(
M̃ ′

1, . . . , M̃
′
N

)
U ′ = normalize(U) = (NU · m̃0, . . . , NU · m̃N) = (m̃′1, . . . , m̃′N)

(2.11)

where the normalization matrix NX, NU are

NX =


1
σx

0 − x̄
σx

0 1
σy
− ȳ
σy

0 0 1

 , NU =


1
σu

0 − ū
σu

0 1
σv
− v̄
σv

0 0 1

 (2.12)

Here x̄, ȳ, σx, σy are defined as follows, ū, v̄, σu, σv are calculated in this way as well.

x̄← 1
N

∑N
k=1 xk, σ2

x ← 1
N−1

∑N
k=1 (xk − x̄)2

ȳ ← 1
N

∑N
k=1 yk, σ2

y ← 1
N−1

∑N
k=1 (yk − ȳ)2

(2.13)

The correspondence becomes

m̃′k = 1
(h′31 h

′
32 h

′
33) · M̃ ′

k

H ′M̃ ′
k, H ′ ≡ NUHNX

−1 (2.14)

Then we denote h′ = (h′11 h
′
12 h

′
13 h

′
21 h

′
22 h

′
23 h

′
31 h

′
32 h

′
33)T as the vector form of the

homography matrix.

(x′k y′k 1 0 0 0 − x′ku′k − y′ku′k − u′k) · h′ = 0

(0 0 0 x′k y′k 1 − x′kv′k − y′kv′k − v′k) · h′ = 0
(2.15)
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( 2.15 ) holds for each pair of m̃′k, M̃ ′
k (k = 1, · · · , N), stack all the equations for k =

1, · · · , N , yield a system of 2N homogeneous equations



x′1 y′1 1 0 0 0 −x′1u′1 −y′1u′1 −u′1
0 0 0 x′1 y′1 1 −x′1v′1 −y′1v′1 −v′1
... ... ... ... ... ... ... ... ...

x′N y′N 1 0 0 0 −x′Nu′N −y′Nu′N −u′N
0 0 0 x′N y′N 1 −x′Nv′N −y′Nv′N −v′N


· h′ = ~0 (2.16)

In the matrix-vector form, where W is a 2N × 9 matrix

W · h′ = ~0 (2.17)

We may assume that 2N > 9, then we can solve the homogeneous system h′ by finding the

corresponding eigenvector for the smallest eigenvalue of W TW . Afterwards, we can rearrange

h′ to the matrix form H ′. Eventually, we obtain the homography H by de-normalization.

H = N−1
U H ′NX (2.18)

After all, we can refine the homography H by minimizing the error function below with

the initial guess that we obtained in previous formula ( 2.18 ).

H ← argminH
N∑
k=1
||mk − (ûk v̂k)T ||2 where (ûk v̂k 1)T = 1

(h31h32h33) · M̃k

HM̃k (2.19)

2.2.2 Estimation of intrinsic camera matrix A

By comparing ( 2.9 ) and ( 2.10 ), we formulate the relationship between A and the homog-

raphy H, where λ′ is an arbitrary nonzero number.

H = (h1 h2 h3) = λ′A (r1 r2 t) (2.20)
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Based on rT1 · r2 = 0, rT1 · r1 = rT2 · r2 = 1, this yields two constraints for A.

hT1A
−TATh2 = (λ′)2rT1 · r2 = 0, hT1A

−TATh1 = hT2A
−TATh2 = (λ′)2rT2 · r2 = (λ′)2 (2.21)

We may assume that B = λA−TA−1, where λ 6= 0 is an arbitrary nonzero number.

B = λA−TA−1 =


B0 B1 B3

B1 B2 B4

B3 B4 B5

 (2.22)

which is symmetric and consists of 6 different values.

B0/λ = 1
α2 , B1/λ = − c

α2β
,

B2/λ = c2

α2β2 + 1
β2 , B3/λ = v0c−u0β

α2β

B4/λ = − c(v0c−u0β)
α2β2 − v0

β2 , B5/λ = (v0c−u0β)2

α2β2 + v2
0
β2 + 1

(2.23)

Using the vector form of B

b = (B0, B1, B2, B3, B4, B5)T (2.24)

Rewrite Equation ( 2.21 ) as a pair of linear equations
(

vT
1

vT
2

)
·b = ~0, where the coefficients

v1 = (h11h12, h11h22 + h21h12, h21h22, h31h12 + h11h32, h31h22 + h21h32, h31h32)T and v2 =

(h2
11 − h2

12, 2(h11h21 − h12h22), h2
21 − h2

22, 2(h11h31 − h12h32), 2(h21h31 − h22h32), h2
31 − h2

32)T

Stack M pairs of equations for each homography H of all M views. We denote V as the

coefficient matrix V of size 2M × 6.

V · b = ~0 (2.25)

We may assume that 2M ≥ 6, then we can solve the homogeneous system b by finding the

corresponding eigenvector for the smallest eigenvalue of V TV . Afterwards, we can rearrange
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b to the matrix form B. With the Cholesky decomposition, we can conclude the intrinsic

matrix A, but we have to obtain λ firstly.

λ3

(αβ)2 = det(λA−TA−1) =

∣∣∣∣∣∣∣∣∣∣∣
B0 B1 B3

B1 B2 B4

B3 B4 B5

∣∣∣∣∣∣∣∣∣∣∣
= B0B2B5 −B2

1B5 −B0B
2
4 + 2B1B3B4 −B2B

2
3

(2.26)

Moreover, notice that the 3-rd row and 3-rd column element of A is 1, consider the second

order principal submatrix of B by deleting 3-rd row and 3-rd column.

λ2

(αβ)2 = det

λ
 α c

0 β


−T  α c

0 β


−1 =

∣∣∣∣∣∣∣
B0 B1

B1 B2

∣∣∣∣∣∣∣ = B0B2 −B2
1 (2.27)

We denote w, d as the determinant of B and the second order principle submatrix of B,

and therefore compute the nonzero arbitrary number λ.

λ = w

d
,where w ≡ B0B2B5 −B2

1B5 −B0B
2
4 + 2B1B3B4 −B2B

2
3 , d ≡ B0B2 −B2

1 (2.28)

With Equation ( 2.23 ), we propose the closed-form expression of A

α =
√
w/ (d ·B0)

β =
√
w/d2 ·B0

c =
√
w/ (d2 ·B0) ·B1

u0 = (B1B4 −B2B3) /d

v0 = (B1B3 −B0B4) /d

(2.29)

Therefore, we calibrate the intrinsic matrix A with the homograhy H for of all M views.

A =


α c u0

0 β v0

0 0 1

 (2.30)

24



2.2.3 Estimation of extrinsic camera parameters R, t

After obtaining the intrinsic matrix A and λ, we can calculate the corresponding extrinsic

parameters R, t for each homography H of all M views respectively.

r1 = λ · A−1 · h1, r2 = λ · A−1 · h2, t = λ · A−1 · h3, (2.31)

Then we can normalize r1, r2 to make sure |r1| = 1

r1 ←
r1

|r1|
, r2 ←

r2

|r1|
, t← t

|r1|
(2.32)

Notice that R = (r1 r2 r3) is orthonormal, r3 is the cross product of r1, r2

r3 = r1 × r2 (2.33)

The estimated Q = (r1 r2 r3) may not satisfy the constraint of rotation matrix RTR = I.

Then, we solve the best rotation matrix R with the smallest Frobenium norm of R−Q

min
R
‖R−Q‖2

F subject to RTR = I (2.34)

Notice that

‖R−Q‖2
F = 3 + trace

(
QTQ

)
− 2 trace

(
RTQ

)
(2.35)

With the singular value decomposition of Q = UQSQV
T
Q , and where SQ = diag(σ1, σ2, σ3).

If we define an temporary orthogonal matrix ZQ = V T
QR

TUQ

trace
(
RTQ

)
= trace

(
RTUQSQV

T
Q

)
= trace(ZQSQ) =

3∑
i=1

ziiσi ≤
3∑

i=1
σi (2.36)

The maximal is achieved when the orthogonal matrix ZQ = I, that is R = UQV
T
Q .

Consequently, we obtain the best rotation matrix.

R = UQV
T
Q (2.37)
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2.2.4 Estimation of camera lens distortion parameters k1, k2

Let (û v̂)T be the ideal (nonobservable distortion-free) pixel image coordinates, and (u v)T

the real pixel coordinates. With Equation ( 2.6 ) in camera pinhole model, we conclude

 u− û

v − v̂

 =
(
k1r

2 + k2r
4
) α c

0 β


 xu

yu

 , r =
√
x2
u + y2

u (2.38)

where the ideal normalized image coordinates (xu yu)T is defined below


xu

yu

1

 ≡
1
zc


xc

yc

zc

 = 1
zc

R

x

y

z

+ t

 (2.39)

From the definition of (û v̂)T , we have

 û− u0

v̂ − v0

 =

 α c

0 β


 xu

yu

 , r =
√
x2
u + y2

u (2.40)

Thus, we find the following relationship

 u− û

v − v̂

 =
(
k1r

2 + k2r
4
) û− u0

v̂ − v0

 , r =
√
x2
u + y2

u (2.41)

Write in the form with (k1 k2)T as an unknown vector

 u− û

v − v̂

 =

 (û− u0)r2 (û− u0)r4

(v̂ − v0)r2 (v̂ − v0)r4


 k1

k2

 , r =
√
x2
u + y2

u (2.42)

When A,R, t are fixed and N points in M views given, we can stack equations to obtain

total 2MN equations, in matrix form as d = D ·(k1 k2)T . The solution with the least-squares

method is given by  k1

k2

 =
(
DTD

)−1
DTd (2.43)
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2.2.5 Non-linear refinement for all parameters

After all, we refine all the parameters A, k1, k2, Ri, ti(i = 1, · · · , N) by minimizing the

error function defined below with the initial guess that we obtain in formulas ( 2.29 ), (  2.37 )

and (  2.43 ).

argmin
A,k1,k2,Ri,ti

M∑
i=1

N∑
k=1
‖mik − m̂ (A, k1, k2, Ri, ti,Mik)‖2 subject to RT

i Ri = I (2.44)

But before minimizing the error function with the Levenberg-Marquardt algorithm, we

have to rewrite the rotation matrix in a vector form to remove constraints RT
i Ri = I.

Because of the Rodrigues’ rotation formula, the rotation matrix R with the unit rotation

axis u = (u1 u2 u3)T and the rotation angle θ can be written as below

R = I + sin θW + (1− cos θ)W 2 = I + sin θW + (1− cos θ)
[
uuT − I

]
= uuT + cos θ

[
I − uuT

]
+ sin θW = exp(θW )

(2.45)

where W is the matrix form of u×, and W 2 = uuT − I,Wz = ~0.

W ≡


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (2.46)

Thus, we can represent R with an vector ρ = θu. The relationship between the rotation

matrix R and the vector ρ is

trace(R) = trace
(
cos θI + sin θW + (1− cos θ)uuT

)
= 3 cos θ + (1− cos θ)

R−RT = 2 sin θW
(2.47)

Similarly, we can convert the rotation matrix Ri to the rotation vector ρi for all the M

views. The optimization problem in equation ( 2.44 ) is converted to the following problem.

argmin
A,k1,k2,ρi,ti

M∑
i=1

N∑
k=1
‖mik − m̂ (A, k1, k2, ρi, ti,Mik)‖2 (2.48)
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2.3 Triangulation

2.3.1 The expression of the 3D point M

For conciseness of illustration, we define following symbols in Table  2.2 below

Table 2.2. Symbol table for triangulation
symbol definition
r′1 unit direction vector of ray 1
r′2 unit direction vector of ray 2
I1 intersection point of the camera 1 pixel plane and ray 1
I2 intersection point of the camera 2 pixel plane and ray 2
M1 the closest point on ray 1 to ray 2
M2 the closest point on ray 2 to ray 1
M the mid point of M1 and M2
k1 the distance from I1 to M1
k2 the distance from I2 to M2

Our goal is to represent the mid pointM = M1+M2
2 with the known parameters r′1, r′2, I1, I2.

We start from the definitions of M1,M2, the vector M1−M2 must be perpendicular to r′1, r′2

r′T1 (M1 −M2) = 0

r′T2 (M1 −M2) = 0
(2.49)

Because the distance from I1 to M1 and from I2 to M2 are denoted by k1, k2

k1r
′
1 ≡M1 − I1

k2r
′
2 ≡M2 − I2

(2.50)

To solve k1, k2, we firstly replace M1,M2 in (  2.49 ) with the k1, k2 in (  2.50 )

r′T1

(
[I1 − I2] + k1r

′
1 − k2r

′
2

)
= 0

r′T2

(
[I1 − I2] + k1r

′
1 − k2r

′
2

)
= 0

(2.51)
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Equation (  2.51 ) is equivalent to

[r′T1 r′1]k1 − [r′T1 r′2]k2 = −r′T1 [I1 − I2]

−[r′T2 r′1]k1 + [r′T2 r′2]k2 = r′T2 [I1 − I2]
(2.52)

We write Equation (  2.52 ) in the matrix form to solve both k1 and k2

 [r′T1 r′1] −[r′T1 r′2]

−[r′T1 r′2] [r′T2 r′2]


k1

k2

 =

−r′T1 [I1 − I2]

r′T2 [I1 − I2]

 (2.53)

With Cramer’s rule, the expressions of k1, k2 with the known parameters r′1, r′2, I1, I2 are

k1 =

∣∣∣∣∣∣∣
−r′T1 [I1 − I2] −[r′T1 r′2]

r′T2 [I1 − I2] [r′T2 r′2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[r′T1 r′1] −[r′T1 r′2]

−[r′T1 r′2] [r′T2 r′2]

∣∣∣∣∣∣∣
= r′

T
2

 1
1− [r′T1 r′2]2

(
r′1r
′T
2 − r′2r′

T
1

)
[I1 − I2]



k2 =

∣∣∣∣∣∣∣
[r′T1 r′1] −r′T1 [I1 − I2]

−[r′T1 r′2] r′T2 [I1 − I2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[r′T1 r′1] −[r′T1 r′2]

−[r′T1 r′2] [r′T2 r′2]

∣∣∣∣∣∣∣
= r′

T
1

 1
1− [r′T1 r′2]2

(
r′1r
′T
2 − r′2r′

T
1

)
[I1 − I2]


(2.54)

Consequently, the midpoint M is represented with the known parameters r′1, r′2, I1, I2

M ≡ M1 +M2

2 = I1 + I2

2 + k1r
′
1 + k2r

′
2

2

= I1 + I2

2 + 1
2

(
r′1r
′T
2 + r′2r

′T
1

) 1
1− [r′T1 r′2]2

(
r′1r
′T
2 − r′2r′

T
1

)
[I1 − I2]


= I1 + I2

2 + 1
2

1
1− [r′T1 r′2]2

r′1[r′T2 r′1]r′T2 − r′2[r′T1 r′2]r′T1

[I1 − I2]

= I1 + I2

2 + 1
2

[r′T1 r′2]
1− [r′T1 r′2]2

(
r′1r
′T
2 − r′2r′

T
1

)
[I1 − I2]

(2.55)
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2.3.2 The other expression of M with cross product

Consider the cross product of a = (a1 a2 a3)T and b = (b1 b2 b3)T , and its cross product

in matrix form

a× b =


a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 (2.56)

Rearrange the vector a× b in the matrix form

(a× b)× =


0 a2b1 − a1b2 a3b1 − a1b3

a1b2 − a2b1 0 a3b2 − a2b3

a1b3 − a3b1 a2b3 − a3b2 0

 = baT − abT (2.57)

We represent the 3D point M with cross product using
(
r′1r
′T
2 − r′2r′

T
1

)
= −(r′1 × r′2)×

M = I1 + I2

2 − 1
2

[r′T1 r′2]
1− [r′T1 r′2]2

(r′1 × r′2)× [I1 − I2] (2.58)

2.4 U-Net

2.4.1 Architecture of U-Net: encoder and decoder

6464

I

128 128

I/
2
256 256

I/
4512 512

I/
8

1024 1024
I/
16

Bottleneck Conv

512 512 512 512

I/
8

256 256 256 256

I/
4

128 128 128 128

I/
2

64 64 64 64

I

Softmax

Figure 2.6. U-Net Architecture.

30



The U-Net architecture includes the encoder and the decoder. The encoder is composed

of 4 down-sampling modules, and the decoder consists of 4 up-sampling module. For the

down-sampling module, it is made up with the repeated combination of a convolution layer,

a batch normalization layer and a ReLU layer, which is followed by max pooling layer with

stride size=2. All the convolution layers are set up with stride size=3, kernel size=1 and

padding size=1. For the up-sampling module, it is made up with a transposed convolution

layer, a concatenation with the correspondingly feature map from the skip-connection path

and the same repeated combination of a convolution layer, a batch normalization layer and

a ReLU layer. Furthermore, there are the same repeated combination of a convolution layer,

a batch normalization layer and a ReLU layer between the encoder and decoder.

Note that we can address the relationship of the input feature map size and the output

feature map size of a convolution layer as follows.

o =
⌊

i + 2p− k
s

⌋
+ 1 (2.59)

where i, o indicate the height/width of the input feature map and the output feature map

respectively. In addition, kernel size, stride size, and padding size of a convolution layer are

denoted by k, s, p.

Furthermore, we can also write down the relationship of the input feature map size and

the output feature map size of a transposed convolution layer, i.e. deconvolution layer.

o′ = (i′ − 1) s+ k − 2p (2.60)

where i′, o′ indicate the height/width of the input feature map and the output feature map

respectively. In addition, kernel size, stride size, and padding size of a transposed convolution

layer are denoted by k, s, p.
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2.4.2 Optimization method

RMSprop optimization method was firstly proposed by Geoffrey Hinton in his Coursera

course, as one of the adaptive learning rate methods, and extension of Stochastic Gradient

Descent (SGD) and momentum method.

E [g2] (t) = αE [g2] (t− 1) + (1− α)∂J(w)
∂w
� ∂J(w)

∂w

w(t) = w(t− 1)− η√
E[g2](t)+ε

� ∂J(w)
∂w

(2.61)

Where � means the element-wise multiplication, η is the learning rate, α is the moving

average parameter, the default value of ε is 10−8, E [g2] represents the moving average of

squared gradients and ∂J(w)
∂w

means the gradient of loss function J(w) with respect to w the

weights of neural networks.

If we replace the loss function J(w) with the regularization loss during L2 regularization

Ĵ(w) in ( 2.61 ), here λ is the weight decay parameter.

Ĵ(w) = J(w) + λ
2‖w‖

2
2

∂Ĵ(w)
∂w

= ∂J(w)
∂w

+ λw
(2.62)

Thus, equation (  2.61 ) becomes the equation (  2.63 ) below

E [g2] (t) = αE [g2] (t− 1) + (1− α)
(
∂J(w)
∂w

+ λw
)
�
(
∂J(w)
∂w

+ λw
)

w(t) = w(t− 1)− η√
E[g2](t)+ε

�
(
∂J(w)
∂w

+ λw
) (2.63)

For the purpose of making the values of w(t) −w(t − 1) more stable, we introduce the

momentum factor β to ensure

[w(t)−w(t− 1)] = β [w(t− 1)−w(t− 2)]− η√
E [g2] (t) + ε

�
(
∂J(w)
∂w

+ λw

)
(2.64)
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Thus, it leads to

E [g2] (t) = αE [g2] (t− 1) + (1− α)
(
∂J(w)
∂w

+ λw
)
�
(
∂J(w)
∂w

+ λw
)

v(t) = βv(t− 1) + 1√
E[g2](t)+ε

�
(
∂J(w)
∂w

+ λw
)

w(t) = w(t− 1)− ηv(t)

(2.65)

2.4.3 Criterion for loss function

Let’s consider the binary classification problem, there are only the classes 0 and 1. Here

y = (y(1), · · · , y(L))T , y(k) ∈ {0, 1} represents the probability of belonging to the class 1 for

the corresponding input x = (x(1), · · · , x(L))T . We hope to find a mapping of probability

with neural networks, where w is the weights of the neural networks.

ŷ = (ŷ(1), · · · , ŷ(L))T =
(
P̂ (1)

w (y(1) = 1|x), · · · , P̂ (L)
w (y(L) = 1|x)

)
(2.66)

We may assume that each component in y = (y(1), · · · , y(L))T , y(k) ∈ {0, 1} is conditional

independent to x = (x(1), · · · , x(L))T .

P̂w(y|x) =
L∏
k=1

P̂ (k)
w (y(k)|x) (2.67)

Moreover, notice that we can write P̂ (k)
w (y(k)|x) with all the possible options for y(k).

P̂ (k)
w (y(k)|x) = P̂ (k)

w (y(k) = 1|x)y(k) · P̂ (k)
w (y(k) = 0|x)1−y(k) =

(
ŷ(k)

)y(k)

·
(
1− ŷ(k)

)1−y(k)

(2.68)

Thus, we conclude

P̂w(y|x) =
L∏
k=1

(
ŷ(k)

)y(k)

·
L∏
k=1

(
1− ŷ(k)

)1−y(k)

(2.69)
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Let’s take a batch of N samples (xi,yi), i = 1, · · · , N for the variables (x,y). We may

assume for each pair of (xi,yi), they are independent to each other. Thus, we can write

down the likelihood function to maximize P̂w(y1, · · · ,yN |x1, · · · ,xN)

P̂w(y1, · · · ,yN |x1, · · · ,xN) =
N∏

i=1
P̂w(yi|xi) =

N∏
i=1

(
L∏
k=1

(
ŷ

(k)
i

)y(k)
i ·

L∏
k=1

(
1− ŷ(k)

i

)1−y(k)
i

)
(2.70)

Thus, the negative logarithm of P̂w(y1, ·,yN |x1, ·,xN) is

− log
(
P̂w(y1, · · · ,yN |x1, · · · ,xN)

)
= −

N∑
i=1

(
L∑
k

y
(k)
i log

(
ŷ

(k)
i

)
+

L∑
k

(1− y(k)
i ) log

(
1− ŷ(k)

i

))

= −
N∑

i=1

(
yTi log (ŷi) + (~1− yi)T log

(
~1− ŷi

))
(2.71)

In the end, we obtain the cross entropy definition by dividing it with N . We use the cross

entropy as the criterion for loss function in the minimization problem, i.e. the maximization

problem for P̂w(y1, · · · ,yN |x1, · · · ,xN)

J(w) ≡ − 1
N

N∑
i=1

(
yTi log (ŷi) + (~1− yi)T log

(
~1− ŷi

))
(2.72)

Similarly, we can define the cross entropy for multiple classes, where the number of classes

C ≥ 3 and ∑C
c=1 ŷi[c] = ∑C

c=1 yi[c] = ~1 always holds.

J(w) ≡ − 1
N

N∑
i=1

C∑
c=1

(
yTi [c] log (ŷi[c]) + (~1− yi[c])T log

(
~1− ŷi[c]

))
(2.73)

The loss function of cross entropy can be used to regulates voxelwise binary prediction.

2.4.4 Metrics of evaluation

Let’s denote the ground truth image mask with y = (y(1), · · · , y(L))T , y(k) ∈ {0, 1}. In

addition, the corresponding predicted output mask is ŷ = (ŷ(1), · · · , ŷ(L))T , ŷ(k) ∈ [0, 1]
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We can use the dice coefficient to measure the similarity between the ground truth mask

and the predicted mask generated by neural networks.

dice coefficient (y, ŷ) = 2 · yT ŷ + ε

yTy + ŷT ŷ + ε
(2.74)

In addition, the dice coefficient also can be written in the other form

dice coefficient (y, ŷ) = 2 ·∑ (y& (ŷ > 0.5)) + ε∑
y +∑ (ŷ > 0.5) + ε

(2.75)

The corresponding metric, i.e. dice is defined as below

dice (y, ŷ) = 1− dice coefficient (y, ŷ) = (y − ŷ)T (y − ŷ)
yTy + ŷT ŷ + ε

(2.76)

When ε is a very small positive number and the ground truth mask y is nonzero, the

closer the dice is to 0, the closer the dice coefficient is to 1, the closer the predicted mask ŷ

is to the ground truth mask y, and the better performance the neural network model has.

The other metric that could be used to measure the similarity the ground truth mask

and the predicted mask generated is Intersection over Union (IoU), i.e. Jaccard distance.

IoU = J(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (2.77)

We can write IoU of the predicted mask ŷ and the ground truth mask y as a differentiable

function as below

IoU (y, ŷ) = yT ŷ + ε∑
y +∑

ŷ − yT ŷ + ε
(2.78)

In addition, IoU also can be written as in the other form

IoU (y, ŷ) =
∑ (y & (ŷ > 0.5)) + ε∑ (y | (ŷ > 0.5)) + ε

(2.79)
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3. METHODOLOGY

3.1 Structured light vision system with multiple laser emitters and multiple
cameras

The structured light system measurement system is shown in Fig.  3.1 . It is composed of

N laser emitters with green, red, and other colors, a holding platform and K high-resolution

cameras. As demonstrated in Fig.  3.1 , both the camera coordinates and world coordinates

are represented by ockxckyckzck k = 1, 2 · · · , K and oxyz respectively. In addition, we may

assume that the projections of the triangular planes on the horizontal planes exist and can

be captured by the cameras.

Figure 3.1. Height measurement system.

For conciseness of illustration, we define following symbols in Table  3.1 .

Table 3.1. Symbol table for the structured light system
symbol definition

X = (x y z)T the point in the world coordinate
X̄ = (x y z 1)T the homogeneous form of X

Xck = (xck yck zck)T the point in the k-th camera coordinate
X̄ck = (xck yck zck 1)T the homogeneous form of Xck

Ipk = (uk vk)T the point in the pixel coordinate from the k-th camera
Īpk = (uk vk 1)T the homogeneous form of Ipk
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3.1.1 Measurement method

In our project, we can formulate the expression of camera coordinates for camera k as

below ( 3.1 ) and ( 3.2 ) based on the camera pinhole model.

Xck = zckA
−1
k Īpk (3.1)

X̄ck =

 Rk tk

0 1

 X̄ (3.2)

where the intrinsic matrix Ak of k-th camera can be expressed in the form of below

Ak =


αk ck u0k

0 βk v0k

0 0 1

 (3.3)

where for camera k: αk and βk are the scaling factors between camera coordinates and pixel

coordinates in x and y axes. Besides, u0k and v0k are the pixel coordinates of the optical

axis. The ck represents the skewness between the pixel axes and the real image axes. This

[Rk tk] = [r1k r2k r3k tk] denotes the rotation and translation with respect to the camera

coordinates and the world coordinates.

For each characteristic j-th point on the i-th laser plane, it can be denoted by X̄clk(i, j) =

(xcLk(i, j) ycLk(i, j) zcLk(i, j) 1)T . Furthermore, the i-th laser plane can be designated by

πi = (ai bi ci − 1)T . We can derive the following equations

Xclk(i, j)/zck(i, j) = A−1
k Īpk(i, j) (3.4)

π
T
i X̄cLk(i, j) = 0, j = 1, 2, · · · , J (3.5)
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For each given projected point Īpk(i, j), with (  3.4 ), we can achieve

XcLk(i, j)
zcLk(i, j)

=
(
xcLk(i, j)
zcLk(i, j)

ycLk(i, j)
zcLk(i, j)

1
)T

(3.6)

For the calibrated triangular plane i, with (  3.5 ), we can eventually produce

zcLk(i, j) = 1(
ai
xcLk(i,j)
zcLk(i,j) + bi

ycLk(i,j)
zcLk(i,j) + ci

) (3.7)

From ( 3.1 ), Xck(i, j) = XcLk(i, j) can be computed. Finally, we obtain

X̄(i, j) =

 Rk tk

0 1


−1

X̄ck(i, j) (3.8)

With the calibrated intrinsic A and extrinsic parameters Rk, tk and all the laser planes

πik, we can perform the 3D reconstruction successfully.

3.1.2 Calibration of the laser plane π

We describe the camera model in the form of Zhang’s method [  24 ], where the pixel

coordinates and the world coordinates are represented by m̃ = (u v 1)T M = (x y z 1)T .

With a pinhole camera model, we can find the relationship between pixel coordinates and

the world coordinates as below

sm̃ = Ak (Rk tk)M = Ak (r1k r2k r3k tk)M (3.9)

We may assume z = 0 (floor plane) in the model, thus ( 3.9 ) becomes

sm̃ = Ak (r1k r2k tk) M̃ (3.10)

where s indicates the depth to the camera pinhole and M̃ = (x y 1)T . The details of Zhang’s

method to calibrate the intrinsic matrix A and extrinsic parameters R, t can be found in [  24 ].
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Each laser plane πi = (ai bi ci − 1) , i = 1, · · · , N needed in [ 5 ] can be calibrated in-

dependently. As shown in Fig.  3.1 , the floor plane z = 0 in the world coordinate can be

indicated by the plane equation coefficients (0 0 1 0)T . Thus, we can compute the plane

equation coefficients of the floor plane in the camera coordinate as

π0k =

 Rk tk

0 1


−T



0

0

1

0


=
(
a0k b0k c0k d0k

)T
(3.11)

Furthermore, the projected j-th points Xck(i, j) must be on the plane of the checkerboard

in the camera coordinates during calibration, namely,

π
T
0kXck(i, j) = 0 for j = 1, 2, · · · , J (3.12)

In other words, we can write it in a different form

zck(i, j)
(
a0k

xck(i,j)
zck(i,j) + b0k

yck(i,j)
zck(i,j) + c0k

)
= −d0k

for j = 1, 2, · · · , J
(3.13)

Moreover, both xck(i,j)
zck(i,j) and yck(i,j)

zck(i,j) in ( 3.13 ) can be computed with the projected pixel

points (
xck(i,j)
zck(i,j)

yck(i,j)
zck(i,j) 1

)T
= Xck(i,j)

zck(i,j) = A−1
k Īpk(i, j)

for j = 1, 2, · · · , J
(3.14)

Then we can obtain zck(i, j) in the camera coordinates with ( 3.13 ). Consequently, we can

compute characteristic points as below

XcLk(i, j) = Xck(i, j) = zck(i, j)A−1
k Īp(i, j) (3.15)
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Similarly, for i-th triangular laser plane πik = (aik bik cik − 1)T in the k-th camera

coordinate, the characteristic points are known

π
T
ikX̄cLk(i, j) = 0, j = 1, 2, · · · , J (3.16)

With M trials for different checkerboard orientations on the floor plane z = 0, we derive

π
T
ikX̄cLk(i, j)m = 0, j = 1, 2, · · · , J,m = 1, 2, · · · ,M (3.17)

Finally, we use the least-squares method to solve the i-th triangular plane in the k-th

camera coordinate, i.e., πik = (aik bik cik − 1)T .
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3.2 Training process of neural networks

Our dataset contains totally 500 images with the reflective light and the scattering light.

We randomly split 90% of dataset (450 images) and 10% of dataset (50 images) as the

training subset and the test subset respectively.

We use the ReduceLROnPlateau strategy for the learning rate scheduler, i.e. reduce

the learning rate η ← 0.1 · η by multiplying a factor 0.1 once learning stagnates. For the

binary segmentation task, we choose the max mode for the learning rate η, i.e. η will be

reduced when the metric, i.e. dice coefficient on the test dataset has stopped increasing for

2 epochs. Moreover, we set the smooth constant (the moving average parameter) α = 0.99,

the weight decay parameter λ = 10−8, the momentum factor β = 0.9 and the initial learning

rate η0 = 10−3 for the RMSprop optimizer.

9.99e-9
9.995e-9

1e-8
1e-8

1.001e-8
1.002e-8
1.002e-8
1.003e-8
1.003e-8
1.004e-8
1.004e-8
1.004e-8
1.005e-8
1.005e-8
1.006e-8

-1k 0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Figure 3.2. The learning rate η during training.

3.3 Post processing of image

3.3.1 Converting RGB images to grayscale images

Firstly, we convert the RGB masked image from the RGB color space to the grayscale

color space by

I = 0.299 ·R + 0.587 ·G+ 0.114 ·B (3.18)
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Where I indicates the luminance in the grascale color space, and R,G,B denote the

red, green and blue components in the RGB color space. Besides, we can also use the red

component for the red laser, the green laser for the green laser directly to convert the original

image to the grascale image I.

3.3.2 Adaptive contrast enhancement

For the next step, we may use the adaptive contrast enhancement method [  25 ] to eliminate

the effect of dark environment.

Îij = Gij (Iij −Mij) +Mij (3.19)

where Gij, Iij,Mij is the local gain, the luminance and the local mean for the pixel of the

grayscale image at (i, j), and the enhanced luminance at (i, j) denotes Îij. In the paper [  25 ],

it is set up to be Gij = αM
σij
, 0 < α < 1, where M is the global mean value, σij is the local

standard deviation. The local gain Gij is spatially adaptive: we hope that at the edges of

the image or other areas with drastic changes, the Gij is smaller so that no ringing effect is

produced; nevertheless, Gij is large in smooth area, which causes the amplification of noise.

Thus, the maximum value of Gij should be limited. In our work, we set Gij to be

Gij = min
(
σ

σij
, Gmax

)
(3.20)

where the definitions of Mij, σij,M, σ are shown below, note that the image of grayscale

I is padded with n pixels before calculating Mij, σij. Here we set the window size to be
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(2n+ 1)× (2n+ 1) = 17× 17, the maximal gain to be Gmax = 4, and N,M denote the width

and height of images.

Mij = 1
(2n+ 1)2

n∑
∆i=−n

n∑
∆j=−n

Ii+∆i,j+∆j

σij =
√√√√ 1

(2n+ 1)2 − 1

n∑
∆i=−n

n∑
∆j=−n

(Ii+∆i,j+∆j −Mij)2

M = 1
N ·M

N∑
i=1

M∑
j=1

Iij

σ =

√√√√ 1
N ·M − 1

N∑
i=1

M∑
j=1

(Iij −M)2

(3.21)

3.3.3 Binarization and morphological operation

Afterwards, we binarize the enhanced image Î to the binary image Ĩ by the thresholding

method, where the typical value of thbinary ranges from 0.9 to 0.99.

Ĩ =


1 if Î ≥ thbinary×255

0 otherwise
(3.22)

Then, we do an opening operation on the binarized image Ĩ to remove the small objects.

Namely, opening operation is equivalent to doing the erosion operation first then doing the

dilation operation for the next step.

Ĩ ◦ S = (Ĩ 	 S)⊕ S (3.23)

The erosion operation is expected to remove the small object on the foreground, and the

dilation operation to expand the shapes contained in the binary image Ĩ. The erosion and

dilation of the binary image Ĩ by a structuring element S are defined by

Ĩ 	 S = ⋂
s∈S

Ĩ−s

Ĩ ⊕ S = ⋃
s∈S

Ĩs
(3.24)
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where Ĩs, Ĩ−s are the translation of Ĩ by s and −s, and the structuring element S is set to

be a disk-shaped (2r− 1)× (2r− 1) structuring element, where r specifies the radius. In our

work, we set r = 6 and the disk-shaped structuring element S to be

S =



0 0 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 0 0



(3.25)

3.3.4 Extracting laser stripe centers

Finally, we simply compute the coordinates by averaging the clusters of 1s for every ∆v

rows. Besides, the gap between two adjacent distinct clusters should be greater than the

maximum in-cluster gap, i.e. gapmax. In addition, we can use the Steger’s method [ 26 ] to

extract the sub-pixel coordinates of the laser stripe center for further improvement.

Uk :=
{

i
∣∣∣ Ĩi,(k−1)∆v+1 = 1

}
k = 1, · · · ,

⌊
M−1
∆v

⌋
+ 1

Uk
split into=====⇒

Ck⋃
c=1
U (c)
k where for any i1 ∈ U (c1)

k , i2 ∈ U (c2)
k

|i1 − i2| ≤ gapmax if c1 = c2

|i1 − i2| > gapmax if c1 6= c2

(3.26)

where Ck indicates the number of clusters, U (c)
k denote the subset of the c-th cluster subset,

and all the subset are disjoint U (c1)
k ∩ U (c2)

k = ∅ here c1 6= c2
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For each set partition U (c)
k c = 1, · · · , Ck, we average the values in every subset to obtain

the x component of the pixel coordinates, and set (k − 1)∆v + 1 to be the y components

of the pixel coordinates. To obtain more accurate pixel coordinates of the extracted laser

stripe centers, we use the gray weighted method to improve the accuracy. Consequently, we

get the set of all the pixel coordinates U

U :=
bM−1

∆v c+1⋃
k=1

Ck⋃
c=1





max
(
U(c)

k

)
∑

i=min
(
U(c)

k

) i× Ii,(k−1)∆v+1

max
(
U(c)

k

)
∑

i=min
(
U(c)

k

) Ii,(k−1)∆v+1

, (k − 1)∆v + 1, 1



T


(3.27)

3.4 Accuracy evaluation of structured light vision system

First, we calculate the corresponding camera coordinates (x̂c ŷc ẑc)T for each pixel co-

ordinate (u, v, 1)T ∈ U using the method described above. Then, we convert the recon-

structed camera coordinates (x̂c ŷc ẑc)T to the estimated world coordinates (x̂ ŷ ẑ)T =

RT ·
(
(x̂c ŷc ẑc)T − t

)
with the calibrated extrinsic parameters R, t. We can set all the points

to be in the same plane parallel to z = 0, i.e. they all have the same z component (negative

number of the height) in the real world coordinate system. Thus we can define the metric

of error as below

E = z −

∑
(u v 1)T∈U

ẑ(u, v)

|U|
(3.28)

where ẑ(u, v) indicates the reconstructed z component with respect to the pixel coordinates

(u v 1)T ∈ U , and |U| means the cardinality of set U .

In addition, the percentage of error Ep is denoted by

Ep = E

|z|
× 100% (3.29)
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4. RESULTS

4.1 Experiment platform

The designed measurement system includes, red and green laser emitters [ 27 ], 9 × 10

square checkerboard, a processing platform and two high-resolution cameras (Basler acA2500-

14gc GigE camera with ON Semiconductor MT9P031 CMOS sensor, 14 frames per second,

5MP resolution). We used two laser emitters to conduct experiments. The system setup we

used for the measurement is shown in Fig.  4.1 .

Figure 4.1. Proposed structured-light measurement system.
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4.2 Result of metrics for neural networks

We trained the neural networks for 100 epochs, the dice coefficient on the test dataset and

the values of loss function with cross entropy on the training dataset are shown below. All

the ground truth masks were labeled manually with the MATLAB Image Labeler toolbox.

0.8040.8050.8050.8050.8050.8050.8060.8060.8060.8060.8060.8070.807

-1k 0 1k 2k 3k 4k 5k 6k 7k 8k 9k

Figure 4.2. The dice coefficient on test dataset during training.
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Figure 4.3. The values of loss function during training.

After training, we evaluate the performance of the trained neural networks with metrics.

It shows that the dice coefficient for the overall dataset is 0.8108, Intersection over Union

(IoU) is 0.6900 in Table  4.1 .

Table 4.1. The metrics for neural metworks.

metric dice coefficient IoU

0.8108 0.6900

Thus, the neural networks would be able to provide us a mask for each input image, that

only keeps laser stripes and removes the reflective noise in the original input image. We only

retain the areas in the input image where the generated mask is enabled, the other areas are

set to be 0.
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(a) The input image (b) The generated mask (c) The masked image

Figure 4.4. A example image, its corresponding generated mask and the masked image.

The input image, the predicted mask by the neural networks and the ground truth mask

are demonstrated as follows. Fig.  4.5a shows 5 original input images, Fig.  4.5b displays the

corresponding masks generated the neural networks, and Fig.  4.5c is the concatenated image

with 5 ground truth mask.

(a) The original input images used for training neural networks

(b) The generated predicted masks while training neural networks

(c) The ground truth masks used for training neural networks

Figure 4.5. A input image, its predicted mask and the ground truth mask.
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4.3 Result of measurement evaluation

Before combining the neural network part for segmentation and the structured light

system part for reconstruction, we have to check the accuracy of the structured light system

by comparing the actual heights of objects and the calculated heights with the structured

light system.

4.3.1 System calibration results

With MATLAB Camera Calibration toolbox, we calibrated both the intrinsic extrinsic

parameters [R t] and the intrinsic parameter A for each cameras based on Zhang’s method-

ology [ 24 ]. The parameters for the first camera are shown in ( 4.1 ).

A =


7.643543× 103 0 1.067068× 103

0 7.663082× 103 1.032315× 103

0 0 1


k1 = −0.231085, k2 = 0.526775

R =


−0.047294 −0.934260 0.353440

0.991818 −0.085926 −0.094416

0.118579 0.346082 0.930680



t =


0.652110× 102

−0.529570× 102

5.255506× 102



(4.1)

Besides, the plane equation of the laser plane in the left camera coordinates is

π1 =


0.536388× 10−3

3.200885× 10−3

1.803748× 10−3

 (4.2)
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4.3.2 Segmentation results

Fig.  4.6 displays the objects labeled from m1 to m6 whose height measurements were

performed using our structured light vision system.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.6. Measurements for m1 to m6.

Fig.  4.7 shows the segmented masks for m1 to m6 by the trained U-Net neural networks.

The neural network removes the reflective noise in the background and keeps the laser stripe.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.7. Masks for m1 to m6.
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Fig.  4.8 shows the extracted laser stripe for m1 to m6 after the post processing operations.

These operations includes adaptive contrast enhancement, binarization and morphological

opening operation.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.8. Extracted laser stripes for m1 to m6.

4.3.3 Comparison with segmentation results using Watershed

For comparison, we use the marker-controlled Watershed with distance transform [ 28 ] to

find out the boundary of different parts in the image. It is clearly that the laser stripes must

be included in the boundaries (see Fig.  4.9 ). With morphological operations, we can remove

the clear boundary between the darker parts and lighter parts, and keep the laser stripes.

Fig.  4.10 demonstrates the Watershed images with morphological operations.

As we can see, the complex environments have a great impact on segmentation results

of the conventional Watershed method with morphological operations. On the contrary, the

neural networks with U-Net architecture can provide the robust and accurate results for the

segmentation task. Hence, we choose the method with U-Net instead of the conventional

methods like Watershed and morphological operations as our backbone of segmentation

procedure.
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(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.9. Segmentation with Watershed for m1 to m6.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.10. Watershed images with morphological operations for m1 to m6.
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4.3.4 Height measurement results

We can compare the extracted laser stripe centers with U-Net and that without U-

Net as follows. For instance, the white word in the pictures and the scattering light in

Fig.  4.12 affect the performance of the structured light system dramatically. It usually cannot

extract sufficient correct points, sometimes even cannot extract any laser stripe centers in

the complex environment.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.11. Extracted laser strip centers with U-Net method for m1 to m6.

(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

Figure 4.12. Extracted laser strip centers without U-Net method for m1 to m6.
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The reconstructed cloud points for m1 to m6 are shown below in Fig.  4.13 and Fig.  4.14 .

(a) m1 (b) m2

(c) m3 (d) m4

(e) m5 (f) m6

Figure 4.13. Extracted laser strip centers with U-Net method for m1 to m6.

We can notice that the cloud points of our proposed method are consistently and densely

distributed. However, the cloud point distribution of the method without U-Net is sparse

and incoherent.
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(a) m1 (b) m2

(c) m3 (d) m4

(e) m5 (f) m6

Figure 4.14. Extracted laser strip centers without U-Net method for m1 to m6.
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The height measurement results with our proposed method are listed in Table  4.2 , while

Table  4.3 demonstrates the results without U-Net segmentation. The first column in Ta-

ble  4.2 and Table  4.3 indicate the actual heights via physical measurements; meanwhile,

the heights measured with the structured light system are shown in the second column of

Table  4.2 and Table  4.3 . The results in Table  4.3 are the average height of reconstructed

cloud points fter filtering with a threshold of 5 mm.

For m1, the method without U-Net has a large error due to the misidentification of

scattered light. Besides, it cannot provide a predicted height of m4 due to its weak ability

to identify laser stripes in complex environments. In the meantime, our proposed method

can always provide robust height measurements with a range of error 1-2 mm in complex

environments.

Table 4.2. Table of measurement error for the structured light system with U-Net
Measurement Actual Measure Absolute Relative
Number height / mm height / mm error / mm error %
1 6.700 8.864 2.164 32.29%
2 12.800 14.182 1.382 10.8%
3 19.500 20.713 1.213 6.22%
4 6.700 8.530 1.830 27.31%
5 12.800 13.967 1.167 9.11%
6 19.500 20.732 1.232 6.32%

Table 4.3. Table of measurement error for the structured light system without U-Net
Measurement Actual Measure Absolute Relative
Number height / mm height / mm error / mm error %
1 6.700 25.675 18.975 283.20%
2 12.800 12.913 0.113 0.89%
3 19.500 20.232 0.732 3.75%
4 6.700 NA NA NA
5 12.800 12.627 -0.173 -1.35%
6 19.500 20.639 1.139 5.84%

In our conference paper [  29 ], the height measurement results of two cameras are listed in

Table  4.4 , while Table  4.5 includes the worst results from the single camera. The first column

in Table  4.4 and Table  4.5 indicate the actual heights via physical measurements; meanwhile,
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the heights measured with the structured light system are shown in the second column of

Table  4.4 and Table  4.5 . The structured light system has 3.65% obtained from averaging

the relative errors from the six objects. It is clear that the performance of a multi-camera

system exceeds that of a system equipped with a single camera.

Table 4.4. Table of measurement error for the structured light system with two cameras
Measurement Actual Measure Absolute Relative
Number height / mm height / mm error / mm error %
1 6.700 6.839 0.139 2.08 %
2 12.800 12.386 0.414 -3.23 %
3 19.500 18.165 1.335 -6.85 %
4 6.700 6.942 0.242 3.61 %
5 12.800 12.373 0.427 -3.34 %
6 19.500 18.488 1.012 -5.19 %

Table 4.5. Table of measurement error for the structured light system with a
single camera

Measurement Actual Measure Absolute Relative
Number height / mm height / mm error / mm error %
1 6.700 6.787 0.087 1.30 %
2 12.800 11.851 0.949 -7.41 %
3 19.500 17.524 1.976 -10.13 %
4 6.700 7.027 0.327 4.87 %
5 12.800 11.849 0.951 -7.43 %
6 19.500 17.666 1.834 -9.40 %
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5. CONCLUSION

In this paper, we have derived a framework for 3D reconstruction and object height

measurement using multiple cameras and multiple laser emitters. We have developed a U-

Net based approach to tackle the problem cased by the refection and scattering of light in

complex environment. Our experiments demonstrate that the system with multiple cameras

and U-Net laser stripe extraction method improves the accuracy of height measurement

over the single camera and strengthen the stability of system. For the future work, we

can collect more images from different perspectives with reflected light and scattering light.

Thus, we are able to further improve the accuracy of our model for segmentation task with

sufficient information. Besides, we may replace the U-Net architecture with the UNet++

[ 30 ] architecture which has more skip pathways to reduce the semantic disparity between

the encoder feature maps and that of the decoder.
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