Structured Light Vision Systems Using a Robust Laser Stripe Segmentation Method

Zhankun Luo supervisor: Prof. Lizhe Tan

Department of Electrical and Computer Engineering Purdue University Northwest

April 28, 2021

PURDUE
 U N I V E R S I T Y ® NORTHWEST.

Agenda

- Introduction
- Motivation \& Objective
- Theory of multiple cameras
- Segmentation using neural networks
- Post processing
- Experiment result and comparison
- Conclusion

Introduction

Configuration

- Laser emitter structured light
- Camera capture image
- Computer post process

Motivation \& Objective

- Motivation
- Theory of multiple cameras
- Segmentation using neural networks
- Objective
$>$ Height measurement
- Eliminate reflected light noise in the background

(a) The schematic of multiple shots, lasers

(b) Experiment configuration

Theory of multiple cameras

Coordinate system

- World system

$$
M=[X, Y, Z]^{T}, \tilde{M}=[X, Y, Z, 1]^{T}
$$

- Camera system

$$
M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{T}
$$

- Pixel system

$$
m=[u, v]^{T}, \tilde{m}=[u, v, 1]^{T}
$$

Theory of multiple cameras

step 1: Zhang's camera calibration

- Basic equation
$s \tilde{m}=A\left[\begin{array}{ll}R & t\end{array}\right] \tilde{M}$
- Known variables
- pixel coordinates $\tilde{m}=[u, v, 1]^{T}$
- world coordinates $\tilde{M}=[X, Y, 0,1]^{T}$ on plane $Z=0$
- Other variable
\Rightarrow depth to pinhole $s=Z_{c}$
- Calibrated parameters
\downarrow camera intrinsic matrix $A=\left[\begin{array}{ccc}\alpha & \gamma & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1\end{array}\right]$ (u_{0}, v_{0}) the coordinates of the principal point α, β the scale factors in image u and v axes
γ the parameter describing the skewness of the two image axes
\Rightarrow extrinsic matrix $\left[\begin{array}{ll}R & t\end{array}\right]=\left[\begin{array}{llll}r_{1,1} & r_{1,2} & r_{1,3} & t_{1} \\ r_{2}, 1 & r_{2}, 2 & r_{2}, 3 & t_{2} \\ r_{3,1} & r_{3,2} & r_{3,3} & t_{3}\end{array}\right]$
R rotation matrix
t translation

Theory of multiple cameras

- step 2: Laser plane calibration (stage 1)
- Basic equations $s \tilde{m}=A M_{c}, \quad \pi_{0}^{T}\left[\begin{array}{c}M_{c} \\ 1\end{array}\right]=0$
- Known variables
- pixel coordinates $\tilde{m}=[u, v, 1]^{T}$
- camera intrinsic matrix A
- checkerboard plane $(Z=0) \pi_{0}=\left[\begin{array}{cc}R & t \\ 0^{T} & 1\end{array}\right]^{-T}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$

$$
Z=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \tilde{M}=0 \Longleftrightarrow \pi_{0}^{T}\left[\begin{array}{c}
M_{c} \\
1
\end{array}\right]=0
$$

- Calculated camera coordinates
\Rightarrow depth to pinhole $s=Z_{c}$
$>$ camera coordinates $M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{T}$ for points on intersection of the checkerboard plane \& the laser plane

Theory of multiple cameras

- step 2: Laser plane calibration (stage 2)
- Basic equations

$$
\pi^{T}\left[\begin{array}{c}
M_{c} \\
1
\end{array}\right]=0
$$

- Known variables
- camera coordinates $M_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{\top}$ for points on intersection of the checkerboard plane \& the laser plane
- Method
- convert M_{c} for multiple camera systems into the same camera system
- estimate π with the least-squares method
- Calibrated parameters
- laser plane $\pi=[a, b, c,-1]^{T}$

Theory of multiple cameras

- step 3: Height measurement
- Basic equations
$s \tilde{m}^{\prime}=A M_{c}^{\prime}, \quad \pi^{T}\left[\begin{array}{c}M_{c}^{\prime} \\ 1\end{array}\right]=0, \quad M_{c}^{\prime}=\left[\begin{array}{ll}R & t\end{array}\right] \tilde{M}^{\prime}=R M^{\prime}+t$
- Known variables
- pixel coordinates $\tilde{m}^{\prime}=\left[u^{\prime}, v^{\prime}, 1\right]^{T}$ for points on intersection of the object surface \& the laser plane
\Rightarrow laser plane $\pi=[a, b, c,-1]^{T}$
$>$ camera intrinsic matrix A
\Rightarrow extrinsic matrix $\left[\begin{array}{ll}R & t\end{array}\right]$
- Calculated coordinates
- camera coordinates $M_{c}^{\prime}=\left[X_{c}^{\prime}, Y_{c}^{\prime}, Z_{c}^{\prime}\right]^{T}$ for points on intersection of the object surface \& the laser plane
- world coordinates $M^{\prime}=\left[X^{\prime}, Y^{\prime}, Z^{\prime}\right]^{T}$ for points on intersection of the object surface \& the laser plane
- "Height" $H=\frac{1}{N} \sum Z^{\prime}$ average for all the points on intersection of the object surface \& the laser plane

Segmentation using neural networks

- Segmentation using neural networks
- Objective
eliminate the noise caused by reflection and scattering of light
- U-Net
$>$ encoder and decoder
- usage: remove the background noises and keep laser stripes

Figure: U-Net architecture

Segmentation using neural networks

- Segmentation using neural networks
- Dataset
- 500 images with the reflective light and the scattering light
- 90% of dataset (450 images) as the training subset
- 10% of dataset (50 images) as the validation subset during training

(a) Image with reflective noise

(b) Extracted stripe with U-Net

Segmentation using neural networks

- Segmentation using neural networks
- Training procedure
- learning rate scheduler: ReduceLROnPlateau strategy reduce the learning rate $\eta \leftarrow 0.1 \cdot \eta$ once learning stagnates (dice coefficient on validation subset stops increasing)
\Rightarrow loss function: cross entropy

$$
J(\boldsymbol{w}) \equiv-\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{y}_{i}^{T} \log \left(\hat{\boldsymbol{y}}_{i}\right)+\left(\overrightarrow{1}-\boldsymbol{y}_{i}\right)^{T} \log \left(\overrightarrow{1}-\hat{\boldsymbol{y}}_{i}\right)\right)
$$

$\hat{\boldsymbol{y}}_{i}$ i-th predicted mask by U-Net, \boldsymbol{y}_{i} i-th ground truth mask

- optimizer: RMSprop
with momentum to escape from the local minimum of neural networks

Figure: The dice coefficient on test dataset during training.

Segmentation using neural networks

- Segmentation using neural networks

- Results of U-Net

\Rightarrow dice coefficient $=0.8108$ Intersection over Union $(\mathrm{loU})=0.6900$

(a) The images used for training

(b) The predicted masks

(c) The ground truth masks

Post processing

- Post processing
- issue of segmentation
- there could still be reflective noises in the background

(a) The captured image

(b) The masked image

Post processing

- Post processing
- Auto contrast enhancement
- RGB to Grayscale
- Erosion and dilation remove the small noise in the background

(a) The masked image

(b) The image with post processing

Experiment result and evaluation

- Experiment result
- without segmentation using neural networks
- with segmentation using neural networks

(a) Points extraction without U-Net segmentation method

(b) Points extraction with U-Net segmentation method

Experiment result and evaluation

- Experiment result
- without segmentation using neural networks
- with segmentation using neural networks

World Coord

(a) Cloud points without U-Net segmentation method

World Coord

(b) Cloud points with U-Net segmentation method

Conclusion

- Conclusion
- Framework for multiple shots and multiple laser emitters are derived
- Laser stripe segmentation method based on U-Net is further developed to tackle the problem cased by the refection and scattering of light in complex environment

	Without segmentation	With segmentation
Simple operation	X	\checkmark
Luminance effect	x	\checkmark
Accurate	\checkmark	\checkmark

- Our experiments demonstrate that the system with multiple cameras and U-Net laser stripe extraction method strengthens the stability of system

