

Detection of Objects in Video
Streams Using Deep Convolutional

Neural Networks

Zhankun Luo

Ben Matone

Andrew Uzubell

Academic Advisor: Bin Chen

Departments of Engineering

College of Engineering and Sciences

Purdue University Northwest, Hammond Campus

April 24, 2019

ii

Executive Summary

This report presents a new approach on how to make the burden of finding a parking
spot a thing of the past. This method of parking lot occupancy detection will lead to
easier parking and less unneeded traffic in a parking lot. In a day and age where time is
money, every second counts, and nobody should have to spend valuable time
hopelessly searching for a spot to park.

Programming cameras to detect specific objects has many different benefits and
applications. One practical use of this technology is to implement it into cameras in a
parking lot in order to calculate the number of available parking spaces. Then, display
the number of open parking spaces for the motorists to view. That way motorists will
know prior to entering a parking lot if there is an open spot for them to park. This will
lead to a better overall parking experience by eliminating unneeded traffic and
searching in parking lots.

There are already a few different ways that parking lot occupancy is calculated and
displayed. However, programming cameras to calculate the number of open parking
spaces will be more efficient than the current methods. This method will be more
accurate and require less money and maintenance than the current solutions. It also
has the added benefit of detecting parking spaces that are occupied by something other
than a vehicle.

The new design builds off of current object detection techniques in order to fine tune the
detection process. This design utilizes a binary classifier to determine whether or not a
parking spot is occupied or empty. In addition to this, the techniques of image
registration, voting, and perspective transformation have been applied to the videos of
the parking lots. This makes the program more consistent for low angle videos and for
parking spaces that are hard to see. The proposed solution is easy to install and
requires little to no upkeep. Most importantly, it’s more accurate and reliable than the
current methods.

iii

Abstract

The purpose of this report is to streamline the parking process by having parking lot

cameras see, detect, and display whether or not a parking spot is occupied or empty.

Current parking spot occupancy detection utilizes ground sensors, or bars with infrared

sensors, among other expensive, high maintenance, and impractical methods. These

pitfalls prevent the aforementioned methods from being a realistic solution. There are

some parking spot occupancy techniques that use computer vision. However, this

project improves upon those techniques by introducing an original design that is tested

with videos that have many different angles, lighting, stability, weather conditions, and

distance.

The design detailed in the report utilizes a convolutional neural network (CNN or

ConvNet) in order to capture and store the features of thousands of cars. Parking lot

videos are then segmented in order to turn the video into all of its frames. The first

frame of the of the parking lot video then has all of its parking spaces labeled and their

coordinates stored. These coordinates are pulled from the program and run through the

CNN binary classifier to determine whether or not the spot is occupied. If it is

determined to be occupied it is highlighted red, if it is empty it is highlighted green. The

overall number of occupied and empty spaces are displayed on the video along with the

highlighted parking spaces.

iv

Table of Contents

Introduction 1

Background 1

Objectives 1

Constraints 2

Environmental Impact 2

Approach 3

 Obtain Data Sets 3

 Design and Evaluate the CNN Architecture 4

 Acquire Appropriate Hardware 5

 Obtain Parking Lot Videos 6

 Apply Mask to Parking Lot Videos 6

Results 11

Conclusion 25

References 26

Appendix A: Milestone Log 27

Appendix B: Project Schedule 28

v

List of Figures

Figure 1. Images Contained in the Training Data Set 2

Figure 2. Example of Filters Developed with CNN 3

Figure 3. Image in Data Set Before Rescaling and After Rescaling 4

Figure 4. Snip of the Code Displaying the Accuracy for the Classification 6

Figure 5. Outputs for the Small Test Images 7

Figure 6. Labeled Parking Spaces 8

Figure 7. Snip of the Coordinates of the Parking Spots. 8

Figure 8. Original Image of a Parking Space in the Video 9

Figure 9. Rescaled Image of a Parking Space in the Video 9

Figure 10. Outputs for one of the Parking Lot Images 9

Figure 11. Original Image, Mask, and Original Masked 11

Figure 12. Confusion Matrix 12

Figure 13. Label Accuracy Pie Chart 12

Figure 14. Annotation of VOC data set 13

Figure 15. VOC data set with Bounding Box 14

Figure 16. Arrays read by YOLO 14

iv

List of Tables

Table 1. Accuracy Comparison after Improvements

Table 2. Results from UMEA University Project

Table 3. Accuracy Comparison Between Projects

1

Introduction

Two popular methods currently being used to calculate parking lot occupancy are
completed using either barriers with infrared sensors or using ground sensors.
However, neither method is ideal, and each come with their own set of negatives. For
one, using barriers and infrared sensors is not practical in every situation. Parking lots
with high traffic flow or that experience a lot of vehicles entering and not parking would
struggle using this method. This method also does not take in to account spaces that
may be occupied from other obstructions other than vehicles like bicycles, snow, large
debris, etc. Ground sensors excel in these aforementioned categories, but have their
own downfalls. Using ground sensors requires a sensor in every parking spot and the
maintenance of each individual sensor. Installing all of these sensors and maintaining
them becomes expensive.

A need for an efficient and affordable method to detect parking space occupancy is
needed. Because of this, our design plans to build off of the newer technique of
detecting available parking spaces through the use of convolutional neural networks.

Background

The use of ConvNets has been a huge advancement in the field of artificial intelligence
because they are particularly great at analyzing visual imagery. While they are great at
analyzing visual imagery, they also require a lot of processing power. Because of this,
they have not been able to be widely implemented until about the last ten years when
the GPU technology advanced enough to compute these heavy algorithms. This makes
the field of computer vision relatively new when it comes to using CNNs to analyze
images

Objectives

There have already been attempts at designing a ConvNet architecture that can detect
open parking spaces. However, this technology is relatively new so there is room for
improvements to be made. The main goal of this project was to present an accurate and
cost efficient method of displaying the number of open parking spaces in order to
streamline the parking process. This was completed by utilizing a binary classifier
developed from a CNN. This classifier is applied over each parking spot and calculates
whether or not the spot is occupied. If the spot is occupied, then it is highlighted red. If
the spot is empty, then it is highlighted green. In addition to this, the total number of
occupied and empty parking spots in the parking lot are displayed on the video.

2

Constraints

At the start of the project, the team had limited knowledge regarding CNNs. The team
researched how CNNs function, learned the basics of programming in Python using the
numpy and PyTorch packages, and learned the application techniques of CNNs. These
steps were required before the design process could begin.

The programming techniques used in this project required a lot of GPU space. This led
to a lot of revision of techniques in order to get the program to run properly. Early on in
the project, the deep learning technique YOLO was developed in order to detect moving
cars in addition to parked cars. However, the YOLO program required a large amount of
GPU space in order to run. After many revisions, this problem still persisted. Because of
this, it was decided to put the YOLO technique aside and instead improve upon the
CNN classifier.

Video camera footage of a parking lot was needed to test the program but proved
harder to obtain than expected. The project team had the luxury of being able to work
with the Purdue Northwest Police Department to download some of the Purdue
Northwest (PNW) security camera footage. However, the security footage obtained was
at a low angle, which resulted in a lot of overlapping of parked cars. This made it
extremely difficult to detect cars accurately since their view was blocked by other parked
cars. Because of this, it was decided to capture original parking lot footage of the PNW
parking lot north of Porter Hall using the camera purchased with funding from the
Student Research Office. This camera would solve the poor angle problem. However, it
did not arrive until March 18, 2019, which did not allow for much time to test the
program.

It was decided to order a drone with the grant money obtained in the second semester
of the project. This drone arrived too late in the project schedule in order to implement it
into our project. However, a senior design group that builds off of this project’s results
could utilize this drone in various ways for their project.

Environmental Impact

Searching for a parking spot can seem like a never-ending chore. The average motorist
in the U.S. spends 17 hours and $345 a year searching for a spot to park. The total
amount for all of the U.S. motorists is about $72.7 billion [10]. These costs come from
the wasted fuel consumed when searching for a spot. With this wasted fuel comes
wasted emissions from the vehicles. The goal of implementing this project’s parking
spot occupancy technique is to cut down on the parking time and cost for drivers. This
would result in a major decrease in wasted emissions and would help cut down on
vehicle emissions.

3

Approach

The project was divided into the following stages:

1. Obtain Data Sets
2. Design and Evaluate the CNN Architecture
3. Acquire Appropriate Hardware
4. Obtain Parking Lot Videos
5. Apply Mask to Parking Lot Videos

Below is an overview of each stage.

Obtain Data Sets
The first step was to obtain data sets [3]. This was done first that way we knew how go
about designing our ConvNets. The images obtained were of individual parking spaces
that were either occupied or free and consisted of different angles, colors, and lighting.
It was important to obtain a wide variety of parking space images in order to ensure our
CNN model could work in various scenarios. The images in these data sets were
converted into a numeric matrix where each number represents a pixel value of that
image. The data set gathered was separated into three categories: train, validate, and
test. These data sets were independent of each other to ensure no overfitting occurred.

Training Data Set

The training data set was the largest consisting of 6171 images representing occupied
or open parking spaces (Fig. 1). The training data set is the largest of the three because
the model requires a lot of unique examples in order to be able to pick out important
features from images.

Figure 1. Images Contained in the Daytime Training Data Set

Validate Data Set

The validation data set only contains 48 images. These images are similar to the
training images but are independent of the training data. The validation data set is used
to evaluate our CNN architecture. This way any adjustments that need to be made to
the weights of our hyperparameters can be made before the final testing stage.

4

Test Data Set

The test data set contains 49 images. These images are similar to the other data sets
but are unique from them. This ensures that an honest result is obtained from testing
the test data set.

Design and Evaluate the CNN Architecture
The CNN architecture was developed using the Python Programming language. In
addition to Python, the programming libraries torch and Numpy[1][2] were utilized to
create the CNN architecture. Numpy allows users to create large multi-dimensional
arrays and matrices. Torch is a computing framework that allows users to utilize the
power of their GPU to compute large arrays and matrices.

This stage was divided into 3 subsections:

Design the CNN Architecture

A CNN architecture was developed in order to “teach” our program what features to look
for in an image. These features would then be represented as weights that would in turn
make up our filters (Fig. 2). These filters would later be used to detect certain key
features seen in an image and determine whether or not the image we are viewing is in
fact occupied or open.

Figure 2. Example of Filters Developed with CNN

This was completed by designing a CNN architecture that consisted of an input image’s
raw pixel values, 4 convolutional layers, 1 fully connected layer and a binary output
indicating whether the image represented a free parking space or one that was
occupied. The results of all the images were then compared with the expected result of

5

the classification to determine the models efficiency. The filter parameters calculated
from the CNN are then stored. The stored parameters can then be used to detect for
features in images without having to retrain the CNN. This saves a lot of time and
memory of GPU, which are some of the major benefits of using CNNs for object
detection.

It was decided to omit a pooling layer in our model. Pooling layers are often used to
downsize the spatial dimensions of our input image so that different features can be
extracted. Instead of using pooling layers, our design uses a stride that has a value of 2.
This effectively reduces the size of our image in the convolutional layer of our network
without having to add in pooling layers.

Training the CNN

After the CNN model is designed, it is necessary to train the CNN on what features to
look for in order to determine if a spot if occupied. The training data set along with their
corresponding labels are fed into the CNN model multiple times so the classifier can
improve its accuracy in detecting those features. The number of times the whole data
set has been inputted into the CNN is called EPOCH. During the training step, we also
introduced a loss function to quantify the accuracy of our CNN model. It is ideal to get
the loss function as close to zero as possible. The loss function basically compares the
predicted value of the classification with the actual value of the image. After the loss is
computed, the parameters of the CNN are altered in order to obtain the most accurate
CNN model.

Evaluate Design

Once the CNN is trained it must be evaluated in order to see how reliable it is at
classifying new images introduced into the system. This is done by inputting the
validation data set into the CNN model and calculating the accuracy of classifying these
new images. The reason this is performed is because the CNN model may be really
accurate when classifying the training images but not accurate enough when trying to
classify new images. If the accuracy of classifying the val data set is low, then the
EPOCH must be adjusted to avoid overfitting. After the val data has been verified to be
classified accurately, the test data is introduced as the final accuracy check.

Acquire Appropriate Hardware
To further test the program, a video camera was required. The video camera was used
to capture original parking lot video at an angle the program can work with. A microSD
card was needed to store and transfer the video and a tripod was needed to stabilize
the camera. Lastly, a 2TB hard drive was needed to download and transport the
security camera footage obtained from the PNW Police Department.

6

Video Camera

After researching various video cameras, the group decided on the Sony Alpha 6000.
This camera records video in 1080p, which allows for the program to analyze the video
with greater accuracy because there are more pixels to extract data from. Another
benefit of this camera is that it records in mp4 format, which can be easily read by the
program.

MicroSD Card and Tripod

With the chosen camera, real-time streaming was not feasible, so a 32 GB microSD
card was purchased to store and transfer the video recordings. The camera fit onto a
tripod that was provided, so it was not necessary to purchase one. The tripod was
essential for ensuring the accuracy of the program when reading the video because
shifts in the image were seen to influence proper detection of whether a parking spot
was occupied or not.

Hard Drive

A very large external hard drive was needed to download and transport the PNW
security camera footage. It was decided that a 2TB hard drive would provide enough
storage to store all the needed security videos.

Obtain Parking Lot Videos
In order to determine how well the CNN classifier works in real world applications, it
needed to be applied to many videos with varying angles, distance, weather, and
lighting conditions.

Three different types of videos were collected:

PNW Police Department Security Videos

The PNW Police Department was contacted and provided security camera footage of
the parking lot on the west end of the Lawshe building. The low angle of the footage
made it difficult for the program to detect parking spaces because the vehicles closer to
the camera overlapped the other vehicles and parking spaces.

Original PNW Parking Lot Video

Using the video camera that was ordered, the Porter parking lot of PNW was recorded.
The recording was done from the top of the parking garage to allow for a full view of the
parking lot and to prevent overlapping of the parking spaces. This video captured
vehicles pulling into the parking spaces, which allowed for testing of the binary
classifier.

7

YouTube Videos

The PNW security footage and the original parking lot videos did not include all of the
desired conditions that were to be tested. Because of this, several different YouTube
videos were gathered. Each video included a different type of condition that was to be
tested that was not present in the PNW security footage and original parking lot video.

Apply Mask to Parking Lot Videos
After the CNN model was finalized, the next step was to apply it to a video of an entire
parking lot. In this step, the CNN was applied on each parking spot in the video and it
determined whether or not the space was occupied or empty. These spots were then
indicated to be occupied by placing a red rectangle over the occupied spots and a green
rectangle over the empty spots.

The steps followed to complete these conclusions are as follows:

Perspective Transformation

The technique of perspective transformation was applied to all of the parking lot videos
that were captured at a lower angle. The lower angle view makes it very difficult to box
the parking spaces when labeling, since the box cannot avoid overlapping into the next
parking spot (Fig 3). Applying perspective transformation to these videos will transform
the video from having an angled viewpoint, to one that appears to be from above. The
video is transformed by multiplying the original coordinates with the perspective matrix
M (Fig 4). In figure 4, [u,v,w] represents the coordinates in the original image, the matrix
containing ‘a’ is the perspective matrix, and [x’,y’,w’] are the coordinates after
transformation. After this transformation is applied and the classification is determined,
the video is transformed back with inverse matrix of M to its original angle. This
eliminates the problem of overlapping when labeling the parking spaces in the videos
(Fig 5).

8

Figure 3. Mask Applied to Video with No Perspective Transformation

Figure 4. Perspective Transformation Calculation

Figure 5. Mask Applied to Video with Perspective Transformation

9

Labeling the Parking Spots

In order to apply the classifier to each parking spot, the program needs to know where
each parking spot is located within the video. The first step to find the locations of all the
parking spots in the video, is to cut up each video frame by frame. This was done using
OpenCV. The first frame of these videos were used to complete the labeling of each
parking spot in the parking lot picture. Using various image annotation tools (like
RectLabel and Labelme), each parking spot was labeled. They were labeled by boxing
each parking spot within the image and labeling them “parking spot”. Every time a
parking spot was boxed, the annotation tool would save the pixel coordinates. Each
box’s coordinates were represented by four numbers: [xmin,ymin,xmax,ymax]. All the
parking spot coordinates for one image were then saved to an XML file (Fig. 6).

Figure 6. Example of one Labeled Parking Spot in the XML File

Video Stabilization

Most of the videos that were gathered had some movement. Since they are not very
stable, each frame alters the parking spot locations slightly. This causes problems when
trying to apply the mask to all of the parking spaces, since they will have different
locations. To ensure that the mask is accurately applied to each frame, the technique of
image registration was introduced. Image registration was introduced by first finding the
coordinates of a landmark within the video that does not change (i.e. tree, building, etc.)
The location of this landmark in the first frame is then compared to its location in all of
the following frames. The offsets of these locations are calculated, and the frames are
shifted to the same location as the landmark in the first frame. This will result in all of the
parking spots in each frame having the same locations.

Creating and Applying the Masks

Now that the coordinates of all of the parking spaces are known for the given video, the
CNN classifier can be applied to each space. This step is performed by taking the first
image of the hundreds of frames that make up the video. Then, each parking space is

10

cropped out of the image from the known coordinates of the spaces that were stored
while labeling the parking spots. These cropped images are transformed into a list,
more specifically, a Numpy array. This array is then converted into a tensor and the
images are reshaped into (3, 32, 32) so they can be used in the CNN model. Each of
these parking spot images are then fed into the CNN to determine whether or not the
spot is occupied. The output will be 1 if the spot is occupied and 0 if the spot is open.
The parking spaces that were determined to be occupied will then have their respective
boundary box filled in red and the empty spaces will be filled in green on the mask of
that image of the video. The overall number of occupied and empty spots will also be
displayed on each frame of the video. This process will continue for all of the frames of
the video. All the masks are then laid over their respective image. All of these images
with masks over them are put back together which results in a video representation of
the CNN classifier in action.

Voting

The technique of voting was implemented into the classification stage to improve the
accuracy and consistency of the classifiers. Voting works by classifying every frame in
the video. It then calculates the average classification of the previous 2N-1 frames. If
over half - N frames are classified as occupied, the parking spot is determined to be
occupied and a red mask is put over the parking spot. Otherwise, the green mask is
added to the parking spot (Fig. 7). This technique cuts down on the sporadic
classification that can happen in low light and obstructed views. Voting helps in these
scenarios by not changing the classification of a spot just because it could not be seen
very well for a couple frames. It also helps cut down on incorrectly classifying a spot as
occupied when a car drives by a parking spot for a few frames.

Figure 7. Example of the Voting Code

11

Results

This completed version of our CNN architecture has the ability to detect open and
occupied spots from the videos that were acquired.

The results are explained below in the following order:

• Rescaling of Data Sets

• Evaluating Design

• Segmenting Video

• Creating the Mask

• Evaluating Results

• Testing Additional Videos

• Improving Program and Retesting

• Comparing to Other Programs

Rescaling of Data Sets

The images in all of the data sets that were gathered had to be resized into the same
size in order to work with the CNN model. Before rescaling was done, the images had a
size of (150, 150, 3) and had a size of (32, 32, 3) after rescaling (Fig. 8).

Figure 8. Image in Data Set Before Rescaling (left) and After Rescaling (right)

Evaluating Design

After the Binary Classification model was designed it had to be tested to ensure its
accuracy. This was completed by training the CNN model with the resized images from
the training data set. After the CNN model was determined to be accurate, the val data
set was introduced in order to calculate the CNN’s accuracy when classifying these new
images. The code detailing the accuracy of the classification for each EPOCH of the
training and val data sets was written so the accuracy could be evaluated (Fig. 9).

12

Figure 9. Snip of the Code Displaying the Accuracy for the Classification

The classification of these data sets turned out to be highly accurate. The parameters of
the CNN were then saved to be used later on the test data. Next, the test data was
inputted into the CNN model and the classification of the test images was displayed
(Fig. 10). When the output is ‘1’ the spot is classified as occupied and when it is ‘0’ the
spot is classified as open.

Figure 10. Outputs for the Small Test Images

13

Segmenting Video

The video of the entire parking lot had to be hand labeled (Fig. 11).

Figure 11. Labeled Parking Spaces

After labeling the spaces, the coordinates of each parking spot was recorded and saved
to be used later for cropping the images and creating the masks (Fig. 12).

Figure 12. Snip of the Coordinates of the Parking Spots.

Creating the Mask

The coordinates of each parking spot in the video is known. A mask of the parking
spaces in the video can now be made utilizing these coordinates. First, these
coordinates were used in order to crop out the individual parking spaces’ images (Fig.
13).

14

Figure 13. Original Image of a Parking Space in the Video

These images were of size (19,47,3). All the images had to resized to the dimensions
(32, 32, 3) in order to work with our CNN model (Fig. 14).

Figure 14. Rescaled Image of a Parking Space in the Video

The resized images were then saved in a list containing all the resized images for the
overall image of the entire parking lot. This list was then converted into a tensor and
inputted into the CNN model. The output obtained showed the classifications of each
parking space in the entire parking lot image (Fig. 15)

Figure 15. Outputs for one of the Parking Lot Images

15

This information was then used to make a mask for the entire parking lot. The parking
spaces occupied were colored red and the open spaces were colored green. After the
mask was created for each image of the entire parking lot, the mask was put on top of
the original image of the parking lot to highlight the parking spaces (Fig. 16). This
resulted in the masked original image.

16

Figure 16. Original Image (top), Mask (middle), and Original Masked (bottom)

17

Evaluating Results

The video was split into 200 images and each one was inspected to verify the accuracy
of the program. A confusion matrix (Fig. 17) was created based on the average true
positives (accurately predicted occupied), true negatives (accurately predicted free),
and their counterparts (false positives/negatives).

Figure 17. Confusion Matrix

The accuracy, which is shown below (Fig. 18), was calculated using the following
formula: 1 – (FP + FN) / total number of parking spots.

Figure 18. Label Accuracy Pie Chart

Testing Additional Videos

The process of segmenting the video, creating the mask, and evaluating the results was
repeated for five additional videos. Testing these additional videos made it possible to

18

check the program’s accuracy under different conditions such as video recorded at
night, cloudy weather, and varied camera angle. A masked image and the confusion
matrix for each video is shown below, and the accuracy is stated.

The first video was recorded at about a 45 degree angle. The angle of the video caused
vehicles to sometimes obstruct the parking spot next to it, which had a slight affect on
the accuracy. Even with this issue, the program was able to detect the vehicles and
empty parking spots with an accuracy of 93.1%.

Figure 19. Purdue Northwest NW Staff Parking Lot Masked

Figure 20. Confusion Matrix for NW Staff Parking Lot

The next video analyzed was also taken at about a 45 degree camera angle. There was
a shadow over approximately half of the parking spots, which is believed to have
affected the accuracy of the program’s detection as that was where most of the false
positives and false negatives occurred. The program’s detection accuracy for this video
was 91.2%.

19

Figure 21. Shadowed Parking Lot Masked

Figure 22. Confusion Matrix for Shadowed Parking Lot

The third video was recorded at night and at a 45 degree angle. The program performed
very well at determining when the parking spot was occupied, but it had issues with the
spots that were empty. This issue was likely caused by the low lighting conditions and
shadows triggering false positives. The program’s accuracy for this video was 81.3%,
which is significantly lower than the accuracy for the daytime videos.

20

Figure 23. Night Parking Lot Masked without Perspective Transformation(top).

Night Parking Lot Masked with Perspective Transformation (bottom).

21

Figure 24. Confusion Matrix for Night Parking Lot

The fourth video was also taken at night, but from a top-down perspective. The
program’s detection accuracy for this video was 93.7%. This accuracy for this video was
significantly higher than the accuracy for the other nighttime video. This was likely due
to the fact that the program was trained with a large amount of images that had a top-
down view of vehicles.

Figure 25. Night Parking Lot Above View Masked

22

Figure 26. Confusion Matrix for Night Parking Lot Above View

The fifth video used for testing was recorded at about a 30 degree camera angle, had
trees obstructing the camera’s view of some of the parking spots, and had frequent
weather changes from sunny to cloudy. The program’s detection accuracy for this video
was 88.1%. The cloudy weather had a big impact on the accuracy for this video,
especially near the end of the video, where the shadow over the parking spaces got
darker causing more false positives. The obstructing trees also had an effect on the
accuracy, causing the program to detect those spaces as free when they were actually
occupied.

Figure 27. Obstructed View Parking Lot Masked

23

Figure 28. Confusion Matrix for Obstructed View Parking Lot

Improving Program and Retesting

The program was improved by applying a voting technique to it. This allowed for the
program to compare the classification of multiple frames and then vote on whether the
parking spot was occupied or not based on which classification was true for a greater
number of frames. A perspective technique was also implemented and applied to the
Night Parking Lot video. This technique shifted the video to appear from a top-down
view, which helped to overcome the vehicles overlapping parking spots and improve
accuracy.

Below is a table showing how the accuracy changed from the original testing of the five
videos when the voting and perspective techniques were applied.

Video Name
(Shortened)

Original Testing
Accuracy

Voting Technique
Accuracy

Perspective
Technique Accuracy

NW Staff Lot 93.06% 93.27% N/A

Shadowed Lot 91.16% 92.63% N/A

Night Lot 81.29% 80.48% 87.6%

Night Above Lot 93.66% 92.9% N/A

Obstructed Lot 88.05% 87.62% N/A

Table 1. Accuracy Comparison After Improvements

The voting technique improved the accuracy slightly for the NW Staff Lot and the
Shadowed Lot, but decreased the accuracy for the other three parking lots that were
tested. While it did help decrease the rapid changes of detection where a parking spot
would change from occupied to empty or visa versa, it caused a slight delay when a
vehicle entered or left the parking spot before the new classification of that spot was
applied. This delay was responsible for the slight decrease in accuracy for the bottom
three videos.

With the perspective technique applied to the Night Lot, the accuracy improved by about
6.3% from the original test. The delay from the voting technique still affected the

24

accuracy slightly, but the shifting of the video prevented the vehicles from overlapping
the other parking spots, which had a larger effect on the accuracy.

Comparing to Other Programs

The program was compared to two similar projects. The Umea University project took
place in June of 2018 and the University of Tartu project took place in 2018 (the specific
date was not specified).

The Umea University project tested 100 images of the same parking lot at different
times, instead of using a video, and only detected vehicles, not empty spaces. They
applied four methods: the first was their original trained model, the second was a model
with additional training and no box optimization, the third was with no additional training
but with box optimization, and the fourth was with both additional training and box
optimization. Box optimization is where the bounding boxes overlap by 50%, and the
box with the lower accuracy is removed. Their results are shown below[#].

Table 2. Results from Umea University Project[#]

The accuracy of the Umea University project’s results was calculated using the formula
1 – (Missed cars + Wrongly predicted objects) / Predictions. The comparison of their
accuracy to the accuracy of this project’s program is shown in the Table 3.

The University of Tartu’s project also only detected vehicles and not empty parking
spaces. Their testing was conducted using 833 images and resulted in an accuracy of
about 95%[#].

Table 3 below shows the accuracy comparison of this paper’s program to the Umea
University and The University of Tartu’s projects. The asterisks mark the testing that
was done with the program from this project, with the highest accuracy achieved shown
in the table.

25

Video/Project Name Accuracy

Original Test Video* 89.86%

NW Staff Parking Lot* 93.27%

Shadowed Parking Lot* 92.63%

Night Parking Lot* 87.60%

Night Above Parking Lot* 93.66%

Obstructed Parking Lot* 88.05%

Umea University Method 1 89.48%

Umea University Method 2 98.65%

Umea University Method 3 89.81%

Umea University Method 4 94.56%

The University of Tartu 95%

Table 3. Accuracy Comparison Between Projects

As can be seen from Table 3, this program performed with an accuracy close to that of
Umea University’s program and The University of Tartu’s program. It should be noted
that both Umea and Tartu’s programs only detected vehicles and not empty parking
spaces, and that they were not applied to different conditions such as nighttime video,
weather changes, and camera angle.

Conclusion

This program determines if a given parking spot is occupied by applying the binary
classifier on the parking spot location. The spot is highlighted red if occupied and green
if it is open. The program was tested on six different videos with varied traits, with the
highest accuracy achieved being 93.66% and the lowest accuracy achieved being
87.6%. From the accuracy data, the program was shown to perform well from a top-
down or angled view and also during different lighting/weather conditions.

Improvements were made by utilizing registration to handle situations where the camera
video is unstable, the voting technique to improve the precision of the classification, and
the perspective technique to handle situations in the angled camera view where the
vehicles overlapped the parking spots behind them. Compared to similar programs, the
accuracy achieved from this program was slightly lower, but those programs only
detected vehicles and not empty parking spaces. This program also has the advantage
of being able to detect both vehicles and empty parking spots at night, during different
lighting conditions, and various camera angles.

This program is a viable replacement for the current methods such as ground sensors
and infrared sensors, which are costly and require routine maintenance. The program
has the advantage of determining whether the parking spot is occupied or empty and
can then display the empty locations to make finding a parking spot quick and
convenient.

26

References

1. “PyTorch-Tutorial.” https://github.com/MorvanZhou/PyTorch-Tutorial (10 Oct. 2018)

2. “Pytorch-book.” https://github.com/chenyuntc/pytorch-book (31 Jan. 2019)

3. “CNRPark+EXT.” http://cnrpark.it/ (31 Jan. 2019)

4. “The PASCAL Visual Object Classes Challenge 2007.”

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

5. “Vehicle Detection.” https://github.com/tatsuyah/vehicle-detection (31, Jan. 2019)

6. “Keras-yolo2.” https://github.com/experiencor/keras-yolo2 (31, Jan. 2019)

7. “YOLO: You only look once (How it works).”

https://www.youtube.com/watch?v=L0tzmv--CGY&t=178s (31, Jan. 2019)

8. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. "You Only Look Once:

Unified Real-Time Object Detection." 2016 The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2016).

9. Redmon, Joseph and Ali Farhadi.“YOLO9000: Better, Faster, Stronger.” 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).

10. “Searching for Parking Costs Americans $73 Billion a Year.”
http://inrix.com/press-releases/parking-pain-us/ (2 Feb. 2019)

11. Holmstrom, Alexander. “Counting Cars and Determining the Vacancy of a Parking

Lot using Neural Networks” (Master’s Thesis). Umea University, 6 June 2018.

12. Plemakova, Viktoria. “Vehicle Detection Based on Convolutional Neural Networks”

(Master’s Thesis). University of Tartu, 2018.

http://inrix.com/press-releases/parking-pain-us/

27

Appendix A: Milestone Log

MILESTONE LOG

TASKS TARGET DATE

1. Research

 A. Research How CNNs Function 10/26/18

 B. Learn Essential Programs and Programming Languages 11/02/18

 C. Learn Different Application Techniques 10/26/18

2. Acquire Hardware

 A. Choose Camera and Accessories 01/28/19

 B. Choose Development Board 02/06/19

3. Design Program

 A. Getting Image Data Sets and Preprocessing Them 11/12/18

 B. Using Images to Develop Basic CNN Model 11/26/18

 C. Tackling Video Streams with OpenCV 12/08/18

4. Improve and Test Software

 A. Test Program Using Camera Video 02/22/19

 B. Test Program Using Old Security Video 03/22/19

 C. Propose Program to Faculty 04/19/19

 D. Develop Accompanying Application

04/19/19

5. Document

 A. Begin Documentation 10/01/18

 B. End documentation 04/24/19

 C. Complete design review 12/01/18

 D. Complete instruction manual 04/24/18

 E. Complete final report 04/24/19

 F. Complete final team presentation 04/26/19

28

Appendix B: Project Schedule

SCHEDULE

TASKS Sep Oct Nov Dec Jan Feb Mar Apr

1. Research

 A

 C

B

2. Acquire Hardware

 A B

3. Design Program

 A B

 C

4. Improve and Test

Software

 A B C

 D

5. Document

 A C BD

 EF

