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Executive Summary 
 

This report presents a new approach on how to make the burden of finding a parking 
spot a thing of the past. This method of parking lot occupancy detection will lead to 
easier parking and less unneeded traffic in a parking lot. In a day and age where time is 
money, every second counts, and nobody should have to spend valuable time 
hopelessly searching for a spot to park.  
 
Programming cameras to detect specific objects has many different benefits and 
applications. One practical use of this technology is to implement it into cameras in a 
parking lot in order to calculate the number of available parking spaces. Then, display 
the number of open parking spaces for the motorists to view. That way motorists will 
know prior to entering a parking lot if there is an open spot for them to park. This will 
lead to a better overall parking experience by eliminating unneeded traffic and 
searching in parking lots.  
 
There are already a few different ways that parking lot occupancy is calculated and 
displayed. However, programming cameras to calculate the number of open parking 
spaces will be more efficient than the current methods. This method will be more 
accurate and require less money and maintenance than the current solutions. It also 
has the added benefit of detecting parking spaces that are occupied by something other 
than a vehicle. 
 
The new design builds off of current object detection techniques in order to fine tune the 
detection process. This design utilizes a binary classifier to determine whether or not a 
parking spot is occupied or empty. In addition to this, the techniques of image 
registration, voting, and perspective transformation have been applied to the videos of 
the parking lots. This makes the program more consistent for low angle videos and for 
parking spaces that are hard to see. The proposed solution is easy to install and 
requires little to no upkeep. Most importantly, it’s more accurate and reliable than the 
current methods. 
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Abstract 
 

The purpose of this report is to streamline the parking process by having parking lot 

cameras see, detect, and display whether or not a parking spot is occupied or empty. 

Current parking spot occupancy detection utilizes ground sensors, or bars with infrared 

sensors, among other expensive, high maintenance, and impractical methods. These 

pitfalls prevent the aforementioned methods from being a realistic solution. There are 

some parking spot occupancy techniques that use computer vision. However, this 

project improves upon those techniques by introducing an original design that is tested 

with videos that have many different angles, lighting, stability, weather conditions, and 

distance. 

The design detailed in the report utilizes a convolutional neural network (CNN or 

ConvNet) in order to capture and store the features of thousands of cars. Parking lot 

videos are then segmented in order to turn the video into all of its frames. The first 

frame of the of the parking lot video then has all of its parking spaces labeled and their 

coordinates stored. These coordinates are pulled from the program and run through the 

CNN binary classifier to determine whether or not the spot is occupied. If it is 

determined to be occupied it is highlighted red, if it is empty it is highlighted green. The 

overall number of occupied and empty spaces are displayed on the video along with the 

highlighted parking spaces. 
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Introduction 
 

Two popular methods currently being used to calculate parking lot occupancy are 
completed using either barriers with infrared sensors or using ground sensors. 
However, neither method is ideal, and each come with their own set of negatives. For 
one, using barriers and infrared sensors is not practical in every situation. Parking lots 
with high traffic flow or that experience a lot of vehicles entering and not parking would 
struggle using this method. This method also does not take in to account spaces that 
may be occupied from other obstructions other than vehicles like bicycles, snow, large 
debris, etc. Ground sensors excel in these aforementioned categories, but have their 
own downfalls. Using ground sensors requires a sensor in every parking spot and the 
maintenance of each individual sensor. Installing all of these sensors and maintaining 
them becomes expensive.  
 
A need for an efficient and affordable method to detect parking space occupancy is 
needed. Because of this, our design plans to build off of the newer technique of 
detecting available parking spaces through the use of convolutional neural networks. 
 

Background 
 

The use of ConvNets has been a huge advancement in the field of artificial intelligence 
because they are particularly great at analyzing visual imagery. While they are great at 
analyzing visual imagery, they also require a lot of processing power. Because of this, 
they have not been able to be widely implemented until about the last ten years when 
the GPU technology advanced enough to compute these heavy algorithms. This makes 
the field of computer vision relatively new when it comes to using CNNs to analyze 
images 
 

Objectives 
 

There have already been attempts at designing a ConvNet architecture that can detect 
open parking spaces. However, this technology is relatively new so there is room for 
improvements to be made. The main goal of this project was to present an accurate and 
cost efficient method of displaying the number of open parking spaces in order to 
streamline the parking process. This was completed by utilizing a binary classifier 
developed from a CNN. This classifier is applied over each parking spot and calculates 
whether or not the spot is occupied. If the spot is occupied, then it is highlighted red. If 
the spot is empty, then it is highlighted green. In addition to this, the total number of 
occupied and empty parking spots in the parking lot are displayed on the video.  
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Constraints 
 

At the start of the project, the team had limited knowledge regarding CNNs. The team 
researched how CNNs function, learned the basics of programming in Python using the 
numpy and PyTorch packages, and learned the application techniques of CNNs. These 
steps were required before the design process could begin. 
 
The programming techniques used in this project required a lot of GPU space. This led 
to a lot of revision of techniques in order to get the program to run properly. Early on in 
the project, the deep learning technique YOLO was developed in order to detect moving 
cars in addition to parked cars. However, the YOLO program required a large amount of 
GPU space in order to run. After many revisions, this problem still persisted. Because of 
this, it was decided to put the YOLO technique aside and instead improve upon the 
CNN classifier. 
 
Video camera footage of a parking lot was needed to test the program but proved 
harder to obtain than expected. The project team had the luxury of being able to work 
with the Purdue Northwest Police Department to download some of the Purdue 
Northwest (PNW) security camera footage. However, the security footage obtained was 
at a low angle, which resulted in a lot of overlapping of parked cars. This made it 
extremely difficult to detect cars accurately since their view was blocked by other parked 
cars. Because of this, it was decided to capture original parking lot footage of the PNW 
parking lot north of Porter Hall using the camera purchased with funding from the 
Student Research Office. This camera would solve the poor angle problem. However, it 
did not arrive until March 18, 2019, which did not allow for much time to test the 
program.  
 
It was decided to order a drone with the grant money obtained in the second semester 
of the project. This drone arrived too late in the project schedule in order to implement it 
into our project. However, a senior design group that builds off of this project’s results 
could utilize this drone in various ways for their project. 
 
 

Environmental Impact 

 
Searching for a parking spot can seem like a never-ending chore. The average motorist 
in the U.S. spends 17 hours and $345 a year searching for a spot to park. The total 
amount for all of the U.S. motorists is about $72.7 billion [10]. These costs come from 
the wasted fuel consumed when searching for a spot. With this wasted fuel comes 
wasted emissions from the vehicles. The goal of implementing this project’s parking 
spot occupancy technique is to cut down on the parking time and cost for drivers. This 
would result in a major decrease in wasted emissions and would help cut down on 
vehicle emissions. 
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Approach 

 
The project was divided into the following stages: 
 

1. Obtain Data Sets 
2. Design and Evaluate the CNN Architecture 
3. Acquire Appropriate Hardware 
4. Obtain Parking Lot Videos  
5. Apply Mask to Parking Lot Videos 

 
Below is an overview of each stage. 
 

Obtain Data Sets 
The first step was to obtain data sets [3]. This was done first that way we knew how go 
about designing our ConvNets. The images obtained were of individual parking spaces 
that were either occupied or free and consisted of different angles, colors, and lighting. 
It was important to obtain a wide variety of parking space images in order to ensure our 
CNN model could work in various scenarios. The images in these data sets were 
converted into a numeric matrix where each number represents a pixel value of that 
image. The data set gathered was separated into three categories: train, validate, and 
test. These data sets were independent of each other to ensure no overfitting occurred. 
 
Training Data Set 
 
The training data set was the largest consisting of 6171 images representing occupied 
or open parking spaces (Fig. 1). The training data set is the largest of the three because 
the model requires a lot of unique examples in order to be able to pick out important 
features from images. 
 

     
Figure 1. Images Contained in the Daytime Training Data Set 

 
Validate Data Set 
 
The validation data set only contains 48 images. These images are similar to the 
training images but are independent of the training data. The validation data set is used 
to evaluate our CNN architecture. This way any adjustments that need to be made to 
the weights of our hyperparameters can be made before the final testing stage. 
 
 
 



 

4 

Test Data Set 
 
The test data set contains 49 images. These images are similar to the other data sets 
but are unique from them. This ensures that an honest result is obtained from testing 
the test data set. 
 

Design and Evaluate the CNN Architecture 
The CNN architecture was developed using the Python Programming language. In 
addition to Python, the programming libraries torch and Numpy[1][2] were utilized to 
create the CNN architecture. Numpy allows users to create large multi-dimensional 
arrays and matrices. Torch is a computing framework that allows users to utilize the 
power of their GPU to compute large arrays and matrices.    
 
This stage was divided into 3 subsections: 
 
Design the CNN Architecture 
 
A CNN architecture was developed in order to “teach” our program what features to look 
for in an image. These features would then be represented as weights that would in turn 
make up our filters (Fig. 2). These filters would later be used to detect certain key 
features seen in an image and determine whether or not the image we are viewing is in 
fact occupied or open. 
 

 
Figure 2. Example of Filters Developed with CNN 

 
This was completed by designing a CNN architecture that consisted of an input image’s 
raw pixel values, 4 convolutional layers, 1 fully connected layer and a binary output 
indicating whether the image represented a free parking space or one that was 
occupied. The results of all the images were then compared with the expected result of 
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the classification to determine the models efficiency. The filter parameters calculated 
from the CNN are then stored. The stored parameters can then be used to detect for 
features in images without having to retrain the CNN. This saves a lot of time and 
memory of GPU, which are some of the major benefits of using CNNs for object 
detection.  
 
It was decided to omit a pooling layer in our model. Pooling layers are often used to 
downsize the spatial dimensions of our input image so that different features can be 
extracted. Instead of using pooling layers, our design uses a stride that has a value of 2. 
This effectively reduces the size of our image in the convolutional layer of our network 
without having to add in pooling layers. 
 
Training the CNN 
 
After the CNN model is designed, it is necessary to train the CNN on what features to 
look for in order to determine if a spot if occupied. The training data set along with their 
corresponding labels are fed into the CNN model multiple times so the classifier can 
improve its accuracy in detecting those features. The number of times the whole data 
set has been inputted into the CNN is called EPOCH. During the training step, we also 
introduced a loss function to quantify the accuracy of our CNN model. It is ideal to get 
the loss function as close to zero as possible. The loss function basically compares the 
predicted value of the classification with the actual value of the image. After the loss is 
computed, the parameters of the CNN are altered in order to obtain the most accurate 
CNN model. 
 
Evaluate Design 
 
Once the CNN is trained it must be evaluated in order to see how reliable it is at 
classifying new images introduced into the system. This is done by inputting the 
validation data set into the CNN model and calculating the accuracy of classifying these 
new images. The reason this is performed is because the CNN model may be really 
accurate when classifying the training images but not accurate enough when trying to 
classify new images. If the accuracy of classifying the val data set is low, then the 
EPOCH must be adjusted to avoid overfitting. After the val data has been verified to be 
classified accurately, the test data is introduced as the final accuracy check. 
 

Acquire Appropriate Hardware 
To further test the program, a video camera was required. The video camera was used 
to capture original parking lot video at an angle the program can work with. A microSD 
card was needed to store and transfer the video and a tripod was needed to stabilize 
the camera. Lastly, a 2TB hard drive was needed to download and transport the 
security camera footage obtained from the PNW Police Department. 
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Video Camera 
 
After researching various video cameras, the group decided on the Sony Alpha 6000. 
This camera records video in 1080p, which allows for the program to analyze the video 
with greater accuracy because there are more pixels to extract data from. Another 
benefit of this camera is that it records in mp4 format, which can be easily read by the 
program. 
 
MicroSD Card and Tripod 
 
With the chosen camera, real-time streaming was not feasible, so a 32 GB microSD 
card was purchased to store and transfer the video recordings. The camera fit onto a 
tripod that was provided, so it was not necessary to purchase one. The tripod was 
essential for ensuring the accuracy of the program when reading the video because 
shifts in the image were seen to influence proper detection of whether a parking spot 
was occupied or not. 
 
Hard Drive 
 
A very large external hard drive was needed to download and transport the PNW 
security camera footage. It was decided that a 2TB hard drive would provide enough 
storage to store all the needed security videos. 
 

Obtain Parking Lot Videos  
In order to determine how well the CNN classifier works in real world applications, it 
needed to be applied to many videos with varying angles, distance, weather, and 
lighting conditions.  
 
Three different types of videos were collected: 
 
PNW Police Department Security Videos 
 
The PNW Police Department was contacted and provided security camera footage of 
the parking lot on the west end of the Lawshe building. The low angle of the footage 
made it difficult for the program to detect parking spaces because the vehicles closer to 
the camera overlapped the other vehicles and parking spaces. 
 
Original PNW Parking Lot Video 
 
Using the video camera that was ordered, the Porter parking lot of PNW was recorded. 
The recording was done from the top of the parking garage to allow for a full view of the 
parking lot and to prevent overlapping of the parking spaces. This video captured 
vehicles pulling into the parking spaces, which allowed for testing of the binary 
classifier.  
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YouTube Videos 
 
The PNW security footage and the original parking lot videos did not include all of the 
desired conditions that were to be tested. Because of this, several different YouTube 
videos were gathered. Each video included a different type of condition that was to be 
tested that was not present in the PNW security footage and original parking lot video. 
 

Apply Mask to Parking Lot Videos 
After the CNN model was finalized, the next step was to apply it to a video of an entire 
parking lot. In this step, the CNN was applied on each parking spot in the video and it 
determined whether or not the space was occupied or empty. These spots were then 
indicated to be occupied by placing a red rectangle over the occupied spots and a green 
rectangle over the empty spots.  
 
The steps followed to complete these conclusions are as follows: 
 
Perspective Transformation 
 
The technique of perspective transformation was applied to all of the parking lot videos 
that were captured at a lower angle. The lower angle view makes it very difficult to box 
the parking spaces when labeling, since the box cannot avoid overlapping into the next 
parking spot (Fig 3). Applying perspective transformation to these videos will transform 
the video from having an angled viewpoint, to one that appears to be from above. The 
video is transformed by multiplying the original coordinates with the perspective matrix 
M (Fig 4). In figure 4, [u,v,w] represents the coordinates in the original image, the matrix 
containing ‘a’ is the perspective matrix, and [x’,y’,w’] are the coordinates after 
transformation. After this transformation is applied and the classification is determined, 
the video is transformed back with inverse matrix of M to its original angle. This 
eliminates the problem of overlapping when labeling the parking spaces in the videos 
(Fig 5). 
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Figure 3. Mask Applied to Video with No Perspective Transformation 

 
 

 
Figure 4. Perspective Transformation Calculation 

 

 
Figure 5. Mask Applied to Video with Perspective Transformation 
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Labeling the Parking Spots 
 
In order to apply the classifier to each parking spot, the program needs to know where 
each parking spot is located within the video. The first step to find the locations of all the 
parking spots in the video, is to cut up each video frame by frame. This was done using 
OpenCV. The first frame of these videos were used to complete the labeling of each 
parking spot in the parking lot picture. Using various image annotation tools (like 
RectLabel and Labelme), each parking spot was labeled. They were labeled by boxing 
each parking spot within the image and labeling them “parking spot”. Every time a 
parking spot was boxed, the annotation tool would save the pixel coordinates. Each 
box’s coordinates were represented by four numbers: [xmin,ymin,xmax,ymax]. All the 
parking spot coordinates for one image were then saved to an XML file (Fig. 6). 
  

 
Figure 6. Example of one Labeled Parking Spot in the XML File 

  
Video Stabilization 
 
Most of the videos that were gathered had some movement. Since they are not very 
stable, each frame alters the parking spot locations slightly. This causes problems when 
trying to apply the mask to all of the parking spaces, since they will have different 
locations. To ensure that the mask is accurately applied to each frame, the technique of 
image registration was introduced. Image registration was introduced by first finding the 
coordinates of a landmark within the video that does not change (i.e. tree, building, etc.) 
The location of this landmark in the first frame is then compared to its location in all of 
the following frames. The offsets of these locations are calculated, and the frames are 
shifted to the same location as the landmark in the first frame. This will result in all of the 
parking spots in each frame having the same locations. 
 
Creating and Applying the Masks 
 
Now that the coordinates of all of the parking spaces are known for the given video, the 
CNN classifier can be applied to each space. This step is performed by taking the first 
image of the hundreds of frames that make up the video. Then, each parking space is 
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cropped out of the image from the known coordinates of the spaces that were stored 
while labeling the parking spots. These cropped images are transformed into a list, 
more specifically, a Numpy array. This array is then converted into a tensor and the 
images are reshaped into (3, 32, 32) so they can be used in the CNN model. Each of 
these parking spot images are then fed into the CNN to determine whether or not the 
spot is occupied. The output will be 1 if the spot is occupied and 0 if the spot is open. 
The parking spaces that were determined to be occupied will then have their respective 
boundary box filled in red and the empty spaces will be filled in green on the mask of 
that image of the video. The overall number of occupied and empty spots will also be 
displayed on each frame of the video. This process will continue for all of the frames of 
the video. All the masks are then laid over their respective image. All of these images 
with masks over them are put back together which results in a video representation of 
the CNN classifier in action. 
 
Voting 
 
The technique of voting was implemented into the classification stage to improve the 
accuracy and consistency of the classifiers. Voting works by classifying every frame in 
the video. It then calculates the average classification of the previous 2N-1 frames. If 
over half - N frames are classified as occupied, the parking spot is determined to be 
occupied and a red mask is put over the parking spot. Otherwise, the green mask is 
added to the parking spot (Fig. 7). This technique cuts down on the sporadic 
classification that can happen in low light and obstructed views. Voting helps in these 
scenarios by not changing the classification of a spot just because it could not be seen 
very well for a couple frames. It also helps cut down on incorrectly classifying a spot as 
occupied when a car drives by a parking spot for a few frames. 
 

 
Figure 7. Example of the Voting Code 
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Results 

 
This completed version of our CNN architecture has the ability to detect open and 
occupied spots from the videos that were acquired. 
 
The results are explained below in the following order: 

• Rescaling of Data Sets 

• Evaluating Design 

• Segmenting Video 

• Creating the Mask 

• Evaluating Results 

• Testing Additional Videos 

• Improving Program and Retesting 

• Comparing to Other Programs 
 
Rescaling of Data Sets 
 
The images in all of the data sets that were gathered had to be resized into the same 
size in order to work with the CNN model. Before rescaling was done, the images had a 
size of (150, 150, 3) and had a size of (32, 32, 3) after rescaling (Fig. 8). 

 
Figure 8. Image in Data Set Before Rescaling (left) and After Rescaling (right) 

 
Evaluating Design 
 
After the Binary Classification model was designed it had to be tested to ensure its 
accuracy. This was completed by training the CNN model with the resized images from 
the training data set. After the CNN model was determined to be accurate, the val data 
set was introduced in order to calculate the CNN’s accuracy when classifying these new 
images. The code detailing the accuracy of the classification for each EPOCH of the 
training and val data sets was written so the accuracy could be evaluated (Fig. 9). 
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Figure 9. Snip of the Code Displaying the Accuracy for the Classification 

 
The classification of these data sets turned out to be highly accurate. The parameters of 
the CNN were then saved to be used later on the test data. Next, the test data was 
inputted into the CNN model and the classification of the test images was displayed 
(Fig. 10). When the output is ‘1’ the spot is classified as occupied and when it is ‘0’ the 
spot is classified as open. 

 

 
Figure 10. Outputs for the Small Test Images 
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Segmenting Video 
 
The video of the entire parking lot had to be hand labeled (Fig. 11).  

 

 
Figure 11. Labeled Parking Spaces 

 
After labeling the spaces, the coordinates of each parking spot was recorded and saved 
to be used later for cropping the images and creating the masks (Fig. 12). 

 

 
Figure 12. Snip of the Coordinates of the Parking Spots. 

 
Creating the Mask 
 
The coordinates of each parking spot in the video is known. A mask of the parking 
spaces in the video can now be made utilizing these coordinates. First, these 
coordinates were used in order to crop out the individual parking spaces’ images (Fig. 
13).  
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Figure 13. Original Image of a Parking Space in the Video 

 
These images were of size (19,47,3). All the images had to resized to the dimensions 
(32, 32, 3) in order to work with our CNN model (Fig. 14). 

 
Figure 14. Rescaled Image of a Parking Space in the Video 

 
The resized images were then saved in a list containing all the resized images for the 
overall image of the entire parking lot. This list was then converted into a tensor and 
inputted into the CNN model. The output obtained showed the classifications of each 
parking space in the entire parking lot image (Fig. 15) 

 

 
Figure 15. Outputs for one of the Parking Lot Images 
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This information was then used to make a mask for the entire parking lot. The parking 
spaces occupied were colored red and the open spaces were colored green. After the 
mask was created for each image of the entire parking lot, the mask was put on top of 
the original image of the parking lot to highlight the parking spaces (Fig. 16). This 
resulted in the masked original image. 
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Figure 16. Original Image (top), Mask (middle), and Original Masked (bottom) 
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Evaluating Results 
 
The video was split into 200 images and each one was inspected to verify the accuracy 
of the program. A confusion matrix (Fig. 17) was created based on the average true 
positives (accurately predicted occupied), true negatives (accurately predicted free), 
and their counterparts (false positives/negatives).  
 

 
Figure 17. Confusion Matrix 

 
The accuracy, which is shown below (Fig. 18), was calculated using the following 
formula: 1 – (FP + FN) / total number of parking spots. 

 

 
Figure 18. Label Accuracy Pie Chart 

 
Testing Additional Videos 

 
The process of segmenting the video, creating the mask, and evaluating the results was 
repeated for five additional videos. Testing these additional videos made it possible to 
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check the program’s accuracy under different conditions such as video recorded at 
night, cloudy weather, and varied camera angle. A masked image and the confusion 
matrix for each video is shown below, and the accuracy is stated. 
 
The first video was recorded at about a 45 degree angle. The angle of the video caused 
vehicles to sometimes obstruct the parking spot next to it, which had a slight affect on 
the accuracy. Even with this issue, the program was able to detect the vehicles and 
empty parking spots with an accuracy of 93.1%.  
 

 
Figure 19. Purdue Northwest NW Staff Parking Lot Masked 

 

 
Figure 20. Confusion Matrix for NW Staff Parking Lot 

 
The next video analyzed was also taken at about a 45 degree camera angle. There was 
a shadow over approximately half of the parking spots, which is believed to have 
affected the accuracy of the program’s detection as that was where most of the false 
positives and false negatives occurred. The program’s detection accuracy for this video 
was 91.2%. 
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Figure 21. Shadowed Parking Lot Masked 

 

 
Figure 22. Confusion Matrix for Shadowed Parking Lot 

 
The third video was recorded at night and at a 45 degree angle. The program performed 
very well at determining when the parking spot was occupied, but it had issues with the 
spots that were empty. This issue was likely caused by the low lighting conditions and 
shadows triggering false positives. The program’s accuracy for this video was 81.3%, 
which is significantly lower than the accuracy for the daytime videos.  
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Figure 23. Night Parking Lot Masked without Perspective Transformation(top).     

Night Parking Lot Masked with Perspective Transformation (bottom). 
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Figure 24. Confusion Matrix for Night Parking Lot 

 
The fourth video was also taken at night, but from a top-down perspective. The 
program’s detection accuracy for this video was 93.7%. This accuracy for this video was 
significantly higher than the accuracy for the other nighttime video. This was likely due 
to the fact that the program was trained with a large amount of images that had a top-
down view of vehicles. 
 

 
Figure 25. Night Parking Lot Above View Masked 
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Figure 26. Confusion Matrix for Night Parking Lot Above View 

 
The fifth video used for testing was recorded at about a 30 degree camera angle, had 
trees obstructing the camera’s view of some of the parking spots, and had frequent 
weather changes from sunny to cloudy. The program’s detection accuracy for this video 
was 88.1%. The cloudy weather had a big impact on the accuracy for this video, 
especially near the end of the video, where the shadow over the parking spaces got 
darker causing more false positives. The obstructing trees also had an effect on the 
accuracy, causing the program to detect those spaces as free when they were actually 
occupied.  
 
 

 
Figure 27. Obstructed View Parking Lot Masked 
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Figure 28. Confusion Matrix for Obstructed View Parking Lot 

 
Improving Program and Retesting 
 
The program was improved by applying a voting technique to it. This allowed for the 
program to compare the classification of multiple frames and then vote on whether the 
parking spot was occupied or not based on which classification was true for a greater 
number of frames. A perspective technique was also implemented and applied to the 
Night Parking Lot video. This technique shifted the video to appear from a top-down 
view, which helped to overcome the vehicles overlapping parking spots and improve 
accuracy. 
 
Below is a table showing how the accuracy changed from the original testing of the five 
videos when the voting and perspective techniques were applied. 
 

 

Video Name 
(Shortened) 

Original Testing 
Accuracy 

Voting Technique 
Accuracy 

Perspective 
Technique Accuracy 

NW Staff Lot 93.06% 93.27% N/A 

Shadowed Lot 91.16% 92.63% N/A 

Night Lot 81.29% 80.48% 87.6% 

Night Above Lot 93.66% 92.9% N/A 

Obstructed Lot 88.05% 87.62% N/A 

Table 1. Accuracy Comparison After Improvements 
 

The voting technique improved the accuracy slightly for the NW Staff Lot and the 
Shadowed Lot, but decreased the accuracy for the other three parking lots that were 
tested. While it did help decrease the rapid changes of detection where a parking spot 
would change from occupied to empty or visa versa, it caused a slight delay when a 
vehicle entered or left the parking spot before the new classification of that spot was 
applied. This delay was responsible for the slight decrease in accuracy for the bottom 
three videos. 
 
With the perspective technique applied to the Night Lot, the accuracy improved by about 
6.3% from the original test. The delay from the voting technique still affected the 
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accuracy slightly, but the shifting of the video prevented the vehicles from overlapping 
the other parking spots, which had a larger effect on the accuracy. 

 
Comparing to Other Programs 
 
The program was compared to two similar projects. The Umea University project took 
place in June of 2018 and the University of Tartu project took place in 2018 (the specific 
date was not specified). 
 
The Umea University project tested 100 images of the same parking lot at different 
times, instead of using a video, and only detected vehicles, not empty spaces. They 
applied four methods: the first was their original trained model, the second was a model 
with additional training and no box optimization, the third was with no additional training 
but with box optimization, and the fourth was with both additional training and box 
optimization. Box optimization is where the bounding boxes overlap by 50%, and the 
box with the lower accuracy is removed. Their results are shown below[#]. 
 

 
Table 2. Results from Umea University Project[#] 

 
The accuracy of the Umea University project’s results was calculated using the formula 
1 – (Missed cars + Wrongly predicted objects) / Predictions. The comparison of their 
accuracy to the accuracy of this project’s program is shown in the Table 3. 
 
The University of Tartu’s project also only detected vehicles and not empty parking 
spaces. Their testing was conducted using 833 images and resulted in an accuracy of 
about 95%[#].  
 
Table 3 below shows the accuracy comparison of this paper’s program to the Umea 
University and The University of Tartu’s projects. The asterisks mark the testing that 
was done with the program from this project, with the highest accuracy achieved shown 
in the table. 
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Video/Project Name Accuracy 

Original Test Video* 89.86% 

NW Staff Parking Lot* 93.27% 

Shadowed Parking Lot* 92.63% 

Night Parking Lot* 87.60% 

Night Above Parking Lot* 93.66% 

Obstructed Parking Lot* 88.05% 

Umea University Method 1 89.48% 

Umea University Method 2 98.65% 

Umea University Method 3 89.81% 

Umea University Method 4 94.56% 

The University of Tartu 95% 

Table 3. Accuracy Comparison Between Projects 
 
As can be seen from Table 3, this program performed with an accuracy close to that of 
Umea University’s program and The University of Tartu’s program. It should be noted 
that both Umea and Tartu’s programs only detected vehicles and not empty parking 
spaces, and that they were not applied to different conditions such as nighttime video, 
weather changes, and camera angle. 
 

Conclusion 
 

This program determines if a given parking spot is occupied by applying the binary 
classifier on the parking spot location. The spot is highlighted red if occupied and green 
if it is open. The program was tested on six different videos with varied traits, with the 
highest accuracy achieved being 93.66% and the lowest accuracy achieved being 
87.6%. From the accuracy data, the program was shown to perform well from a top-
down or angled view and also during different lighting/weather conditions. 
 
Improvements were made by utilizing registration to handle situations where the camera 
video is unstable, the voting technique to improve the precision of the classification, and 
the perspective technique to handle situations in the angled camera view where the 
vehicles overlapped the parking spots behind them. Compared to similar programs, the 
accuracy achieved from this program was slightly lower, but those programs only 
detected vehicles and not empty parking spaces. This program also has the advantage 
of being able to detect both vehicles and empty parking spots at night, during different 
lighting conditions, and various camera angles. 
 
This program is a viable replacement for the current methods such as ground sensors 
and infrared sensors, which are costly and require routine maintenance. The program 
has the advantage of determining whether the parking spot is occupied or empty and 
can then display the empty locations to make finding a parking spot quick and 
convenient. 
 
  



 

26 

References 

1. “PyTorch-Tutorial.” https://github.com/MorvanZhou/PyTorch-Tutorial (10 Oct. 2018) 

2. “Pytorch-book.” https://github.com/chenyuntc/pytorch-book (31 Jan. 2019) 

3. “CNRPark+EXT.” http://cnrpark.it/ (31 Jan. 2019) 

4. “The PASCAL Visual Object Classes Challenge 2007.” 

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ 

5. “Vehicle Detection.” https://github.com/tatsuyah/vehicle-detection (31, Jan. 2019) 

6. “Keras-yolo2.” https://github.com/experiencor/keras-yolo2 (31, Jan. 2019) 

7. “YOLO: You only look once (How it works).” 

https://www.youtube.com/watch?v=L0tzmv--CGY&t=178s (31, Jan. 2019) 

8. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. "You Only Look Once: 

Unified Real-Time Object Detection." 2016 The IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR) (2016). 

9. Redmon, Joseph and Ali Farhadi.“YOLO9000: Better, Faster, Stronger.” 2017 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). 

10. “Searching for Parking Costs Americans $73 Billion a Year.”  
http://inrix.com/press-releases/parking-pain-us/ (2 Feb. 2019) 

 
11. Holmstrom, Alexander. “Counting Cars and Determining the Vacancy of a Parking 

Lot using Neural Networks” (Master’s Thesis). Umea University, 6 June 2018. 
 
12. Plemakova, Viktoria. “Vehicle Detection Based on Convolutional Neural Networks” 

(Master’s Thesis). University of Tartu, 2018. 

 

 

 

 

 

 

 

 

 

http://inrix.com/press-releases/parking-pain-us/


 

27 

Appendix A: Milestone Log 

MILESTONE LOG 

TASKS                 TARGET DATE 

1.  Research 

  A. Research How CNNs Function           10/26/18 

  B. Learn Essential Programs and Programming Languages     11/02/18 

  C. Learn Different Application Techniques         10/26/18 

2.  Acquire Hardware 

  A. Choose Camera and Accessories           01/28/19 

  B. Choose Development Board            02/06/19 

3.  Design Program 

  A. Getting Image Data Sets and Preprocessing Them              11/12/18 

  B. Using Images to Develop Basic CNN Model                 11/26/18 

  C. Tackling Video Streams with OpenCV          12/08/18 

4.     Improve and Test Software 

  A. Test Program Using Camera Video           02/22/19 

  B. Test Program Using Old Security Video                         03/22/19 

  C. Propose Program to Faculty                    04/19/19 

       D. Develop Accompanying Application            

04/19/19 

5.  Document 

  A. Begin Documentation                    10/01/18 

  B.  End documentation                                     04/24/19 

  C.  Complete design review                         12/01/18 

       D.  Complete instruction manual           04/24/18 

       E.  Complete final report             04/24/19 

       F.  Complete final team presentation         04/26/19 
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Appendix B: Project Schedule 

 

SCHEDULE 

 

TASKS Sep Oct Nov Dec Jan Feb Mar Apr 

1.  Research 

 

      A 

  C   

B      

2.  Acquire Hardware 

 

          A B   

3.  Design Program 

 

     A B 

       

 C     

4.  Improve and Test 

Software 

          A    B    C         

   D 

5.  Document 

 

 A  C        BD 
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