refract ray

here is comment in Triangulate. refractRay () of project underwater-camera-calibration

```
# - 'rayDir' is the vector of the incoming ray
# - 'planeNormal' is the plane normal of the refracting interface
# - 'n1' is the refraction index of the medium the ray travels
>FROM<
# - 'n2' is the refractio index of the medium the ray travels >TO<
```


table of symbol

SMYBOL	MEANING
v_{1}	unit direction vector (FROM)
v_{2}	unit direction vector (TO)
n	refraction index (FROM)
n_{1}	refraction index (TO)
n_{2}	angle (FROM)
θ_{1}	angle (TO)
θ_{2}	

analysis

We should notice that n is opposed to the incoming ray direction v_{1} :

$$
v_{1}^{T} n<0, v_{1}^{T} v_{1}=v_{2}^{T} v_{2}=n^{T} n=1
$$

Now that we know all the parameters except v_{2}, we need derive the expression of v_{2} with other variables v_{1}, n, n_{1}, n_{2}

reconstruct vector

and notice cross product matrix $n \times n \times=n n^{T}-I$ and $n^{T} n=1$:

$$
\begin{aligned}
\left|v_{1}\right| \cos \theta_{1} & \equiv \frac{-v_{1}^{T} n}{|n|}=-v_{1}^{T} n \\
\left|v_{1}\right|^{2} \sin ^{2} \theta_{1} & \equiv\left|v_{1}-(-n) \frac{\left(-n^{T} v_{1}\right)}{n^{T} n}\right|^{2}=\left|v_{1}-\frac{n n^{T}}{n^{T} n} v_{1}\right|^{2}=\left|\left(I-n n^{T}\right) v_{1}\right|^{2} \\
& =\left|-n \times\left(n \times v_{1}\right)\right|^{2}=v_{1}^{T}\left(I-n n^{T}\right)^{T}\left(I-n n^{T}\right) v_{1} \\
& =v_{1}^{T}\left(I-n n^{T}\right)\left(I-n n^{T}\right) v_{1} \\
& =v_{1}^{T}\left(I-n n^{T}\right) v_{1}=v_{1}^{T}\left[-n \times n \times v_{1}\right] v_{1} \\
& =v_{1}^{T} v_{1}-\left[v_{1}^{T} n\right]^{2} \\
v_{1} & \equiv n n^{T} v_{1}+\left(I-n n^{T}\right) v_{1}=n\left(n^{T} v_{1}\right)-n \times\left(n \times v_{1}\right) \\
& =(-n)\left|v_{1}\right| \cos \theta_{1}+\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|}\left|v_{1}\right| \sin \theta_{1}
\end{aligned}
$$

Use $v_{1}^{T} v_{1}=1$:

$$
\begin{aligned}
& \sin \theta_{1}=\sqrt{\frac{v_{1}^{T} v_{1}-\left[v_{1}^{T} n\right]^{2}}{v_{1}^{T} v_{1}}}=\sqrt{1-\left[v_{1}^{T} n\right]^{2}} \\
& v_{1}=(-n) \cos \theta_{1}+\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|} \sin \theta_{1}
\end{aligned}
$$

For the same reason, $v_{2}^{T} v_{2}=1$, and v_{1}, v_{2}, n in the same plane: $n \times v_{1}, n \times v_{2}$ are linear related, and $v_{1}^{T} n<0, v_{2}^{T} n<0$:

$$
\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|}=\frac{\left[-n \times\left(n \times v_{2}\right)\right]}{\left|-n \times\left(n \times v_{2}\right)\right|}
$$

We want to reconstruct v_{2} with n, v_{1}, similarly:
here is decomposition of orthogonal basis, because $n^{T}\left[n \times n \times v_{1}\right]=n^{T}\left[n n^{T}-I\right] v_{1}=0^{T} v_{1}=0$

$$
\begin{aligned}
v_{2} & =(-n) \cos \theta_{2}+\frac{\left[-n \times\left(n \times v_{2}\right)\right]}{\left|-n \times\left(n \times v_{2}\right)\right|} \sin \theta_{2} \\
& =(-n) \cos \theta_{2}+\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|} \sin \theta_{2}
\end{aligned}
$$

Snell's Law

From previous formula, only things are missing to reconstruct v_{2} is $\sin \theta_{2}, \cos \theta_{2}$

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

We want to express θ_{1}, θ_{2} with parameters that we know v_{1}, n, n_{1}, n_{2},

$$
\begin{aligned}
& \cos \theta_{1}=-v_{1}^{T} n \\
& \sin \theta_{1}=\sqrt{\frac{v_{1}^{T} v_{1}-\left[v_{1}^{T} n\right]^{2}}{v_{1}^{T} v_{1}}}=\sqrt{1-\left[v_{1}^{T} n\right]^{2}} \\
& \sin \theta_{2}=\frac{n_{1}}{n_{2}} \sin \theta_{1}=\frac{n_{1}}{n_{2}} \sqrt{1-\left[v_{1}^{T} n\right]^{2}} \\
& \cos \theta_{2}=\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)}
\end{aligned}
$$

Represent $\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|}$ with v_{1}, n :

$$
\begin{aligned}
\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|} & =\frac{v_{1}+n \cos \theta_{1}}{\sin \theta_{1}} \\
\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|} \sin \theta_{2} & =v_{1} \frac{\sin \theta_{2}}{\sin \theta_{1}}+n \frac{\sin \theta_{2}}{\sin \theta_{1}} \cos \theta_{1} \\
& =v_{1}\left(\frac{n_{1}}{n_{2}}\right)-n n^{T} v_{1}\left(\frac{n_{1}}{n_{2}}\right) \\
& =\left(I-n n^{T}\right) v_{1}\left(\frac{n_{1}}{n_{2}}\right) \\
& =-n \times\left(n \times v_{1}\right)\left(\frac{n_{1}}{n_{2}}\right)
\end{aligned}
$$

Eventually, represent v_{2} with v_{1}, n, n_{1}, n_{2}

$$
\begin{aligned}
v_{2} & =(-n) \cos \theta_{2}+\frac{\left[-n \times\left(n \times v_{1}\right)\right]}{\left|-n \times\left(n \times v_{1}\right)\right|} \sin \theta_{2} \\
& =n\left[-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)}\right]+v_{1}\left(\frac{n_{1}}{n_{2}}\right)-n\left[n^{T} v_{1}\left(\frac{n_{1}}{n_{2}}\right)\right] \\
& =n\left[\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} v_{1}\right]-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)}\right]+v_{1}\left(\frac{n_{1}}{n_{2}}\right)
\end{aligned}
$$

Consider all the possible values of v 1

If the family of vector v_{1} are always on the same plane, the unit normal vector of this plane is π, always holds:

$$
\pi^{T} v_{1}=0
$$

We want to prove always exist $A, B \neq 0$ for any v_{1} that holds $\pi^{T} v_{1}=0$, make sure

$$
\begin{aligned}
(A \pi+B n)^{T} v_{2} & =0 \\
& =A\left[\pi^{T} n\right]\left[\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} v_{1}\right]-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)}\right] \\
& -B \sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)} \\
& =A\left[\pi^{T} n\right]\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} v_{1}\right] \\
& -\left[A\left[\pi^{T} n\right]+B\right] \sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)} \\
\frac{A\left[\pi^{T} n\right]+B}{A\left[\pi^{T} n\right]} & =\frac{\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} v_{1}\right]}{\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[v_{1}^{T} n\right]^{2}\right)}}
\end{aligned}
$$

So, constant A, B don't exist when v_{1} keeps changing

triangulate

Consider replace symbol of refraction:

- replace v_{1} with r to represent unit direction vector (FROM)
- replace v_{2} with r^{\prime} to represent unit direction vector (TO)

Then the formula of r^{\prime} becomes:

$$
r^{\prime}=n\left[\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} r\right]-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[r^{T} n\right]^{2}\right)}\right]+r\left(\frac{n_{1}}{n_{2}}\right)
$$

symbol table

SMYBOL	MEANING
r_{1}^{\prime}	unit direction vector of ray 1 in water
r_{2}^{\prime}	unit direction vector of ray 2 in water
I_{1}	intersection point of interface plane and ray 1
I_{2}	intersection point of interface plane and ray 2
M_{1}	closest point of ray 1 to ray 2
M_{2}	closest point of ray 2 to ray 1
M	mid point of M_{1} and M_{2}
k_{1}	scalar factor from I_{1} to M_{1}
k_{2}	scalar factor from I_{2} to M_{2}

Our goal is to express M with what we know $r_{1}^{\prime}, r_{2}^{\prime}, I_{1}, I_{2}$

analysis

Defination of M_{1}, M_{2},
the closest point pair $M_{1}-M_{2}$ must be perpendicular to $r_{1}^{\prime}, r_{2}^{\prime}$:

$$
\begin{aligned}
r_{1}^{\prime T}\left(M_{1}-M_{2}\right) & =0 \\
r_{2}^{\prime T}\left(M_{1}-M_{2}\right) & =0
\end{aligned}
$$

Definition of k_{1}, k_{2} :

$$
\begin{aligned}
k_{1} r_{1}^{\prime} & \equiv M_{1}-I_{1} \\
k_{2} r_{2}^{\prime} & \equiv M_{2}-I_{2}
\end{aligned}
$$

Replace M_{1}, M_{2} with unknow k_{1}, k_{2}
and what we know $r_{1}^{\prime}, r_{2}^{\prime}, I_{1}, I_{2}$,
To solve k_{1}, k_{2} firstly

$$
\begin{aligned}
r_{1}^{\prime T}\left(\left[I_{1}-I_{2}\right]+k_{1} r_{1}^{\prime}-k_{2} r_{2}^{\prime}\right) & =0 \\
r_{2}^{\prime T}\left(\left[I_{1}-I_{2}\right]+k_{1} r_{1}^{\prime}-k_{2} r_{2}^{\prime}\right) & =0
\end{aligned}
$$

It is equivalent to

$$
\begin{aligned}
& {\left[r_{1}^{\prime T} r_{1}^{\prime}\right] k_{1}-\left[r_{1}^{T} r_{2}^{\prime}\right] k_{2}=-r_{1}^{\prime T}\left[I_{1}-I_{2}\right]} \\
& -\left[r_{2}^{T} r_{1}^{\prime}\right] k_{1}+\left[r_{2}^{\prime T} r_{2}^{\prime}\right] k_{2}=r_{2}^{\prime T}\left[I_{1}-I_{2}\right]
\end{aligned}
$$

In matrix form

$$
\left(\begin{array}{cc}
{\left[r_{1}^{T} r_{1}^{\prime}\right]} & -\left[r_{1}^{\prime T} r_{2}^{\prime}\right] \\
-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] & {\left[r_{2}^{\prime}{ }_{2}^{T} r_{2}^{\prime}\right]}
\end{array}\right)\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\binom{-r_{1}^{\prime T}\left[I_{1}-I_{2}\right]}{r_{2}^{\prime T}\left[I_{1}-I_{2}\right]}
$$

With Cramer's rule

$$
\begin{aligned}
& k_{1}=\frac{\left|\begin{array}{cc}
-r_{1}^{\prime} \\
r_{2}^{\prime}\left[I_{1}-I_{2}\right] & -\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] \\
\left.I_{1}-I_{2}\right] & {\left[r_{2}^{\prime T}{ }_{2}^{\prime} r_{2}^{\prime}\right]}
\end{array}\right|}{\left|\begin{array}{cc}
{\left[r^{\prime}{ }_{1}^{T} r_{1}^{\prime}\right]} & -\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] \\
-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] & {\left[r_{2}^{\prime}{ }_{2}{ }_{2}^{\prime} r_{2}^{\prime}\right]}
\end{array}\right|}=\frac{\left[-r_{2}^{\prime T} r_{2}^{\prime} r_{1}^{\prime}{ }_{1}^{T}+r_{2}^{\prime T} r_{1}^{\prime} r_{2}^{\prime T}{ }_{2}\right]\left[I_{1}-I_{2}\right]}{1-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}} \\
& =r_{2}^{\prime T}\left[\frac{1}{1-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left(r_{1}^{\prime} r_{2}^{\prime T}-r_{2}^{\prime} r_{1}^{T}\right)\left[I_{1}-I_{2}\right]\right] \\
& k_{2}=\frac{\left|\begin{array}{cc}
{\left[r_{1}^{\prime}{ }_{1}^{T} r_{1}^{\prime}\right]} & -r_{1}^{\prime T}\left[I_{1}-I_{2}\right] \\
-\left[r_{1}^{\prime T}{ }_{1}^{\prime} r_{2}^{\prime}\right] & r_{2}^{\prime T}{ }_{2}^{T}\left[I_{1}-I_{2}\right]
\end{array}\right|}{\left|\begin{array}{cc}
\left.r^{\prime}{ }_{1}^{T} r_{1}^{\prime}\right] & -\left[r^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] \\
-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right] & {\left[r^{\prime}{ }_{2}^{T} r_{2}^{\prime}\right]}
\end{array}\right|}=\frac{\left[r_{1}^{\prime}{ }_{1}^{T} r_{1}^{\prime} r^{\prime}{ }_{2}^{T}-{r_{1}^{\prime}}_{1}^{T} r_{2}^{\prime} r_{1}^{\prime T}{ }_{1}\right]\left[I_{1}-I_{2}\right]}{1-\left[r^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}} \\
& =r_{1}^{\prime T}\left[\frac{1}{1-\left[r^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left(r_{1}^{\prime} r_{2}^{\prime T}-r_{2}^{\prime} r_{1}^{\prime T}\right)\left[I_{1}-I_{2}\right]\right]
\end{aligned}
$$

expression of M

Definition of M is

$$
\begin{aligned}
& M \equiv \frac{M_{1}+M_{2}}{2}=\frac{I_{1}+I_{2}}{2}+\frac{k_{1} r_{1}^{\prime}+k_{2} r_{2}^{\prime}}{2} \\
& =\frac{I_{1}+I_{2}}{2}+\frac{1}{2}\left(r_{1}^{\prime} r_{2}^{\prime T}+r_{2}^{\prime} r_{1}^{\prime T}\right)\left[\frac{1}{1-\left[r^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left(r_{1}^{\prime} r_{2}^{\prime T}-r_{2}^{\prime} r_{1}^{\prime T}\right)\left[I_{1}-I_{2}\right]\right] \\
& =\frac{I_{1}+I_{2}}{2}+\frac{1}{2} \frac{1}{1-\left[r^{\prime}{ }_{1}^{\prime} r_{2}^{\prime}\right]^{2}}\left[\left(r_{1}^{\prime} r_{2}^{T}+r_{2}^{\prime} r_{1}^{\prime T}\right)\left(r_{1}^{\prime} r^{\prime}{ }_{2}^{T}-r_{2}^{\prime} r_{1}^{\prime T}\right)\right]\left[I_{1}-I_{2}\right] \\
& =\frac{I_{1}+I_{2}}{2}+\frac{1}{2} \frac{1}{1-\left[r^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left[r_{1}^{\prime}\left[r_{2}^{\prime}{ }_{2}^{T} r_{1}^{\prime}\right] r_{2}^{\prime T}-r_{2}^{\prime}\left[r_{1}^{\prime T} r_{2}^{\prime}\right] r_{1}^{\prime T}\right]\left[I_{1}-I_{2}\right] \\
& =\frac{I_{1}+I_{2}}{2}+\frac{1}{2} \frac{\left[r_{1}^{\prime T} r_{2}^{\prime}\right]}{1-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left(r_{1}^{\prime} r^{\prime}{ }_{2}^{T}-r_{2}^{\prime} r_{1}^{T}\right)\left[I_{1}-I_{2}\right]
\end{aligned}
$$

Consider the cross product, and its cross product matrix form

$$
\begin{gathered}
a \times b=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] \\
(a \times b) \times=\left[\begin{array}{ccc}
0 & -\left[a_{1} b_{2}-a_{2} b_{1}\right] & a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1} & 0 & -\left[a_{2} b_{3}-a_{3} b_{2}\right] \\
-\left[a_{3} b_{1}-a_{1} b_{3}\right] & a_{2} b_{3}-a_{3} b_{2} & 0
\end{array}\right] \\
=\left[\begin{array}{ccc}
0 & a_{2} b_{1}-a_{1} b_{2} & a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1} & 0 & a_{3} b_{2}-a_{2} b_{3} \\
a_{1} b_{3}-a_{3} b_{1} & a_{2} b_{3}-a_{3} b_{2} & 0
\end{array}\right] \\
=\left[\begin{array}{llll}
a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} \\
a_{1} b_{2} & a_{2} b_{2} & a_{3} b_{2} \\
a_{1} b_{3} & a_{2} b_{3} & a_{3} b_{3}
\end{array}\right]-\left[\begin{array}{ccc}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right]
\end{gathered}
$$

Similarly, we have

$$
\begin{gathered}
\left(r_{1}^{\prime}{r_{2}^{\prime}}_{2}^{T}-r_{2}^{\prime} r_{1}^{\prime T}\right)=-\left(r_{1}^{\prime} \times r_{2}^{\prime}\right) \times \\
M=\frac{I_{1}+I_{2}}{2}-\frac{1}{2} \frac{\left[{r_{1}^{\prime}}_{1}^{T} r_{2}^{\prime}\right]}{1-\left[r_{1}^{\prime}{ }_{1}^{T} r_{2}^{\prime}\right]^{2}}\left(r_{1}^{\prime} \times r_{2}^{\prime}\right) \times\left[I_{1}-I_{2}\right]
\end{gathered}
$$

under-water model

The unit vector on the laser plane v_{m}

$$
\begin{gathered}
v_{m}=c_{1} \pi+c_{2} n \\
\pi^{T} v_{m}=\pi^{T}\left(c_{1} \pi+c_{2} n\right)=c_{1}+c_{2}\left(\pi^{T} n\right)=0 \\
v_{m}^{T} v_{m}=\left(c_{1}^{2}+c_{2}^{2}\right)+2 c_{1} c_{2}\left(\pi^{T} n\right)=1
\end{gathered}
$$

Then we can have that

$$
\begin{gathered}
c_{1}=-c_{2}\left(\pi^{T} n\right) \\
{\left[1+\left(\pi^{T} n\right)^{2}\right] c_{2}^{2}-2\left(\pi^{T} n\right)^{2} c_{2}^{2}=1}
\end{gathered}
$$

Then we solve

$$
\begin{gathered}
c_{2}=\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}} \\
c_{1}=\frac{\left(\pi^{T} n\right)}{\sqrt{1-\left(\pi^{T} n\right)^{2}}} \\
v_{m}=\pi\left[\frac{\left(\pi^{T} n\right)}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]+n\left[\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]
\end{gathered}
$$

expression of r, \mathbf{r}^{\prime}

Consider replace symbol of refraction:

- replace v_{1} with r to represent unit direction vector (FROM)
- replace v_{2} with r^{\prime} to represent unit direction vector (TO)

Here r_{θ} is the unit vector
after rotating v_{m} around rotaion axis π for angle θ :

$$
\begin{aligned}
r_{\theta} & =R_{\theta} v_{m} \\
& =\left[\cos \theta I+\sin \theta(\pi \times)+(1-\cos \theta) \pi \pi^{T}\right] v_{m} \\
& =\left[\cos \theta I+\sin \theta(\pi \times)+(1-\cos \theta) \pi \pi^{T}\right]\left(\pi\left[\frac{\left(\pi^{T} n\right)}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]+n\left[\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]\right) \\
& =\cos \theta\left(\pi\left[\frac{\left(\pi^{T} n\right)}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]+n\left[\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]\right) \\
& +\sin \theta(\pi \times n)\left[\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]
\end{aligned}
$$

After refraction, the formula of r_{θ}^{\prime} is:

$$
r_{\theta}^{\prime}=n\left[\left(\frac{n_{1}}{n_{2}}\right)\left[-n^{T} r_{\theta}\right]-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\left[r_{\theta}^{T} n\right]^{2}\right)}\right]+r_{\theta}\left(\frac{n_{1}}{n_{2}}\right)
$$

Here, the inner product, is a function of angle θ :

$$
\left[-n^{T} r_{\theta}\right]=\cos \theta \sqrt{1-\left(\pi^{T} n\right)^{2}}
$$

Thus

$$
\begin{aligned}
r_{\theta}^{\prime} & =n\left[-\left(\frac{n_{1}}{n_{2}}\right)\left[\cos \theta \frac{\left(\pi^{T} n\right)^{2}}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\cos ^{2} \theta\left[1-\left(\pi^{T} n\right)^{2}\right]\right)}\right] \\
& +\sin \theta(\pi \times n)\left(\frac{n_{1}}{n_{2}}\right)\left[\frac{-1}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right] \\
& +\cos \theta \pi\left(\frac{n_{1}}{n_{2}}\right)\left[\frac{\left(\pi^{T} n\right)}{\sqrt{1-\left(\pi^{T} n\right)^{2}}}\right]
\end{aligned}
$$

find intersection I

set the interface plane

$$
n^{T} I=h
$$

Here it must on the ray, all start from laser point P :

$$
I_{\theta}=P+k_{\theta} r_{\theta}
$$

Solve k_{θ}, I_{θ} respectively

$$
\begin{gathered}
n^{T} P-k_{\theta} \cos \theta \sqrt{1-\left(\pi^{T} n\right)^{2}}=h \\
k_{\theta}=\frac{n^{T} P-h}{\cos \theta \sqrt{1-\left(\pi^{T} n\right)^{2}}} \\
I_{\theta}=P+\left[n^{T} P-h\right]\left[\pi\left[\frac{\left(\pi^{T} n\right)}{1-\left(\pi^{T} n\right)^{2}}\right]+n\left[\frac{-1}{1-\left(\pi^{T} n\right)^{2}}\right]\right]+\left[n^{T} P-h\right] \tan \theta(\pi \times n)\left[\frac{-1}{1-\left(\pi^{T} n\right)^{2}}\right]
\end{gathered}
$$

