Rodrigues' rotation formula

Reference: https://www.cnblogs.com/xpvincent/archive/2013/02/15/2912836.html

symbol table

SYMBOL	MEANING
v	vector original
v^{\prime}	vector rotated
z	unit vector of rotation axis
θ	rotation angle
x, y	unit vectors orthogonal
x^{\prime}, y^{\prime}	unit vectors rotated

analysis

Here we can write v, v^{\prime} as:

$$
\begin{gathered}
v=a x+b y+c z \\
v^{\prime}=a x^{\prime}+b y^{\prime}+c z
\end{gathered}
$$

Relationship between unit vectors x^{\prime}, y^{\prime} and x, y :

$$
\begin{gathered}
x^{\prime}=\cos \theta x+\sin \theta y \\
y^{\prime}=-\sin \theta x+\cos \theta y
\end{gathered}
$$

Represent vector rotated v^{\prime} with unit vectors x, y, z :

$$
\begin{aligned}
v^{\prime} & =a(\cos \theta x+\sin \theta y)+b(-\sin \theta x+\cos \theta y)+c z \\
& =\cos \theta(a x+b y)+\sin \theta(a y-b x)+c z
\end{aligned}
$$

Represent $(a x+b y),(a y-b x),(c z)$, with v, z respectively:

$$
\begin{aligned}
c z & =(v \cdot z) z \\
a x+b y & =v-c z=v-(v \cdot z) z \\
a y-b x & =z \times(a x+b y)=z \times(a x+b y+c z)=z \times v
\end{aligned}
$$

Replace $(a x+b y),(a y-b x),(c z)$,
with $[v-(v \cdot z) z],[z \times v],(v \cdot z) z$ respectively:

$$
\begin{aligned}
v^{\prime} & =\cos \theta[v-(v \cdot z) z]+\sin \theta[z \times v]+(v \cdot z) z \\
& =v+\sin \theta[z \times v]+(1-\cos \theta)[-v+(v \cdot z) z]
\end{aligned}
$$

Write cross product \times as Antisymmetric Matrix $\left[A^{T}=-A\right]:$

$$
\begin{aligned}
z \times v & =\left[\begin{array}{ccc}
0 & -z_{3} & z_{2} \\
z_{3} & 0 & -z_{1} \\
-z_{2} & z_{1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=A v \\
-v+(v \cdot z) z & =-(a x+b y) \\
& =z \times(a y-b x) \\
& =z \times(z \times v) \\
& =A^{2} v
\end{aligned}
$$

formula

Eventually, replace $[z \times v],[-v+(v \cdot z) z]$ with A, v :

$$
\begin{aligned}
v^{\prime} & =[v]+\sin \theta[A v]+(1-\cos \theta)\left[A^{2} v\right] \\
& =\left[I+\sin \theta A+(1-\cos \theta) A^{2}\right] v
\end{aligned}
$$

That means if we know $\theta, z \Leftrightarrow \theta, A$, we can calculate vector rotated v^{\prime}

rotation matrix

Here define rotation matrix R, we have $v^{\prime}=R v$:

$$
R \equiv I+\sin \theta A+(1-\cos \theta) A^{2}
$$

Consider A^{2} and z :

$$
\begin{aligned}
A^{2} & =-A^{T} A=-\left[\begin{array}{ccc}
0 & -z_{3} & z_{2} \\
z_{3} & 0 & -z_{1} \\
-z_{2} & z_{1} & 0
\end{array}\right]^{T}\left[\begin{array}{ccc}
0 & -z_{3} & z_{2} \\
z_{3} & 0 & -z_{1} \\
-z_{2} & z_{1} & 0
\end{array}\right] \\
& =-\left[\begin{array}{ccc}
z_{2}^{2}+z_{3}^{2} & -z_{1} z_{2} & -z_{1} z_{3} \\
-z_{1} z_{2} & z_{1}^{2}+z_{3}^{2} & -z_{2} z_{3} \\
-z_{1} z_{3} & -z_{2} z_{3} & z_{1}^{2}+z_{2}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
z_{1}^{2}-1 & z_{1} z_{2} & z_{1} z_{3} \\
z_{1} z_{2} & z_{2}^{2}-1 & -z_{2} z_{3} \\
z_{1} z_{3} & z_{2} z_{3} & z_{3}^{2}-1
\end{array}\right] \\
& =z z^{T}-I
\end{aligned}
$$

Replace A^{2} with $z z^{T}-I$:

$$
\begin{aligned}
R & \equiv I+\sin \theta A+(1-\cos \theta)\left[z z^{T}-I\right] \\
& =\cos \theta I+\sin \theta A+(1-\cos \theta) z z^{T}
\end{aligned}
$$

Euler formula

notice $A z=z \times z=\overrightarrow{0}, z^{T} z=1$,
and

$$
\begin{aligned}
\left(z z^{T}-I\right)^{k} & =\sum_{i=0}^{k}\binom{k}{i}\left(z z^{T}\right)^{i}(-1)^{k-i} I^{k-i} \\
& =(-1)^{k}\left[I+\left(z z^{T}\right) \sum_{i=1}^{k}\binom{k}{i}(-1)^{i}\right] \quad k \geq 1 \\
& =(-1)^{k}\left[I+\left(z z^{T}\right)\left[\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}-1\right]\right] \quad k \geq 1 \\
& =(-1)^{k}\left[I-z z^{T}\right] \quad k \geq 1 \\
\left(z z^{T}-I\right)^{k} & =(-1)^{k} I \quad k=0
\end{aligned}
$$

So, with these

$$
\begin{aligned}
\exp (\theta A) & =\sum_{n=0}^{\infty} \frac{1}{n!}(\theta A)^{n} \\
& =\sum_{k=0}^{\infty} \frac{1}{(2 k)!}(\theta A)^{2 k}+\sum_{k=0}^{\infty} \frac{1}{(2 k+1)!}(\theta A)^{2 k+1} \\
& =\sum_{k=0}^{\infty} \frac{1}{(2 k)!} \theta^{2 k}\left(z z^{T}-I\right)^{k}+A \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!} \theta^{2 k+1}\left(z z^{T}-I\right)^{k} \\
& =z z^{T}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \theta^{2 k}\left[I-z z^{T}\right]+A \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \theta^{2 k+1} I \\
& =z z^{T}+\cos \theta\left[I-z z^{T}\right]+\sin \theta A \\
& =\cos \theta I+\sin \theta A+(1-\cos \theta) z z^{T}
\end{aligned}
$$

To sum up

$$
\begin{aligned}
R & \equiv I+\sin \theta A+(1-\cos \theta) A^{2} \\
& =I+\sin \theta A+(1-\cos \theta)\left[z z^{T}-I\right] \\
& =\cos \theta I+\sin \theta A+(1-\cos \theta) z z^{T} \\
& =\exp (\theta A)
\end{aligned}
$$

quaterion

Think about the quaterion q :

$$
q=s+u=\left[\begin{array}{c}
s \\
u
\end{array}\right]=\left[\begin{array}{c}
s \\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=s 1+\left(u_{1} i+u_{2} j+u_{3} k\right)
$$

Rules of quaterion computation are

$$
\begin{gathered}
i j k=i^{2}=j^{2}=k^{2}=-1 \\
i j=k, j k=i, k i=j
\end{gathered}
$$

Product of any q_{1}, q_{2}, notice here u_{1}, u_{2} are vectors, s_{1}, s_{2} are scalars and notice $u_{1} u_{2}=-\left(u_{1}^{T} u_{2}\right)+u_{1} \times u_{2}$:

$$
\begin{aligned}
q_{1} q_{2} & =\left(s_{1}+u_{1}\right)\left(s_{2}+u_{2}\right)=\left(s_{1} s_{2}+u_{1} u_{2}\right)+s_{1} u_{1}+s_{2} u_{2} \\
& =\left(s_{1} s_{2}-u_{1}^{T} u_{2}\right)+\left[s_{1} u_{2}+s_{2} u_{1}\right]+u_{1} \times u_{2} \\
& =\left[\begin{array}{c}
s_{1} s_{2}-u_{1}^{T} u_{2} \\
{\left[s_{1} u_{2}+s_{2} u_{1}\right]+u_{1} \times u_{2}}
\end{array}\right]
\end{aligned}
$$

Then think about the quaterion of vector $p=[0 ; v]$, and normal quaterion $q \quad\left(|q|^{2}=s^{2}+|u|^{2}=1\right)$, notice that $-(u \times v) \times u=u \times(u \times v)=-\left[v\left(u^{T} u\right)-u\left(u^{T} v\right)\right]$:

$$
\begin{aligned}
q^{\prime} & \equiv q p q *=\left[\begin{array}{l}
s \\
u
\end{array}\right]\left[\begin{array}{l}
0 \\
v
\end{array}\right]\left[\begin{array}{c}
s \\
-u
\end{array}\right] \\
& =\left[\begin{array}{c}
-u^{T} v \\
s v+u \times v
\end{array}\right]\left[\begin{array}{c}
s \\
-u
\end{array}\right] \\
& =\left[\begin{array}{c}
-s u^{T} v+s u^{T} v \\
u u^{T} v+s^{2} v+s u \times v-s v \times u-u \times v \times u
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
v\left(s^{2}+u u^{T}\right)+2 s u \times v-(u \times v) \times u
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
v\left(s^{2}+u u^{T}\right)+2 s u \times v-v\left(u^{T} u\right)+u\left(u^{T} v\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
v\left(s^{2}-u^{T} u+2 u u^{T}\right)+2 s u \times v
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
{\left[\left(s^{2}-u^{T} u\right) I+2 s u \times+2 u u^{T}\right] v}
\end{array}\right]
\end{aligned}
$$

Compare with rotation matrix R :

$$
\begin{aligned}
& R \equiv \cos \theta I+\sin \theta A+(1-\cos \theta) z z^{T} \\
& =\cos \theta I+\sin \theta(z \times)+(1-\cos \theta) z z^{T}
\end{aligned}
$$

Try to make

$$
\begin{gathered}
|q|^{2}=s^{2}+u^{T} u=1 \\
\left(s^{2}-u^{T} u\right)=\cos \theta \\
2 s u=\sin \theta z \\
2 u u^{T}=(1-\cos \theta) z z^{T}
\end{gathered}
$$

Set parameter λ, to make $u=\lambda z$, notice $z^{T} z=1$ then:

$$
\begin{gathered}
s^{2}=1-\lambda^{2} \\
\left(1-2 \lambda^{2}\right)=\cos \theta \\
2 \pm \sqrt{1-\lambda^{2}} \lambda=\sin \theta \\
2 \lambda^{2}=1-\cos \theta
\end{gathered}
$$

So when we select $\lambda=\sin \frac{\theta}{2}$, notice z is unit vector of rotation axis, must have:

$$
\begin{gathered}
s=\cos \frac{\theta}{2} \\
u=\left(\sin \frac{\theta}{2}\right) z \\
q=\left[\begin{array}{c}
s \\
u
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
\left(\sin \frac{\theta}{2}\right) z
\end{array}\right]
\end{gathered}
$$

quaterion can implement rotation, z is unit vector of rotation axis, θ is rotation angle:

$$
\begin{aligned}
p^{\prime} & \equiv q p q *=\left[\begin{array}{l}
s \\
u
\end{array}\right]\left[\begin{array}{l}
0 \\
v
\end{array}\right]\left[\begin{array}{c}
s \\
-u
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
\left(\sin \frac{\theta}{2}\right) z
\end{array}\right]\left[\begin{array}{l}
0 \\
v
\end{array}\right]\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
-\left(\sin \frac{\theta}{2}\right) z
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
{\left[\left(s^{2}-u^{T} u\right) I+2 s u \times+2 u u^{T}\right] v}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
{\left[\cos \theta I+\sin \theta(z \times)+(1-\cos \theta) z z^{T}\right] v}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
{\left[\cos \theta I+\sin \theta A+(1-\cos \theta) z z^{T}\right] v}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
v^{\prime}
\end{array}\right]
\end{aligned}
$$

Euler formula of quaterion

Consider the Euler formula of quaterion, notice that $\left[\begin{array}{l}0 \\ z\end{array}\right]^{2}=\left[\begin{array}{c}0-z^{T} z \\ 0 z+0 z+z \times z\end{array}\right]=-1$:

$$
\begin{aligned}
\exp \left(\left[\begin{array}{c}
0 \\
\left(\frac{\theta}{2}\right) z
\end{array}\right]\right) & \equiv \sum_{n=0}^{\infty} \frac{\left(\frac{\theta}{2}\right)^{n}}{n!}\left[\begin{array}{l}
0 \\
z
\end{array}\right]^{n} \\
& =\sum_{k=0}^{\infty} \frac{\left(\frac{\theta}{2}\right)^{2 k}}{(2 k)!}(-1)^{k}+\left[\begin{array}{l}
0 \\
z
\end{array}\right] \sum_{k=0}^{\infty} \frac{\left(\frac{\theta}{2}\right)^{2 k+1}}{(2 k)!}(-1)^{k} \\
& =\cos \frac{\theta}{2}+\left[\begin{array}{l}
0 \\
z
\end{array}\right] \sin \frac{\theta}{2} \\
& =\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
\left(\sin \frac{\theta}{2}\right) z
\end{array}\right] \\
& =q
\end{aligned}
$$

