Chap 1.1 Dimension Analysis

Zhankun Luo

School of Electrical and Computer Engineering Purdue University Northwest

August 26, 2020

PURDUE UNIVERSITY

Zhankun Luo (Purdue University Northwest)

- Fundamental dimensions
- Generalized Π theorem
- Process
 - Represent quantities q₁, · · · , q_m
 - Express dimensionless π
 - Write dimension matrix A
 - ▶ Row operation $A = [R_{n \times r} | T_{n \times (m-r)}] \xrightarrow{\text{row operation } S} SA = \begin{bmatrix} l_{r \times r} & Q \\ 0 & 0 \end{bmatrix}$
 - Solve Ap = 0
 - Physical law with π
 - Simplify

Table: Fundamental dimensions

Dimension	Unit	Symbol	Unit Abbr.
Mass	kilogram	М	kg
Length	meter	L	m
Time	second	Т	s
Electric Current	ampere	1	А
Luminous Intensity	candela	J	cd
Temperature	kelvin	Θ	K
Amount of Substance	mole	N	mol

A physical law relating m dimensional quantities $q_1, ..., q_m$

$$f(q_1,...,q_m)=0$$

is equivalent to

$$F(\pi_1,...,\pi_r)=0$$

that relates the r dimensionless quantities $\pi_1, ..., \pi_r$ that can be formed from $q_1, ..., q_m$

Represent quantities

Example 1.7

• (Heat transfer) f(e, t, r, c, k, u) = 0 with quantities e, t, r, c, k, u

►
$$[e] = ML^2 T^{-2}, [t] = T, [r] = L, [c] = ML^{-1} T^{-2} \Theta^{-1}, [k] = L^2 T^{-1}, [u] = \Theta$$

Express dimensionless π

•
$$\pi = (e)^{q_1}(t)^{q_2}(r)^{q_3}(c)^{q_4}(k)^{q_5}(u)^{q_6}$$

$$\blacktriangleright \ [\pi] = (ML^2 T^{-2})^{q_1} (T)^{q_2} (L)^{q_3} (ML^{-1} T^{-2} \Theta^{-1})^{q_4} (L^2 T^{-1})^{q_5} (\Theta)^{q_6}$$

	е	t	r	С	k	и
М	1	0	0	1	0	0
L	2	0	1	-1	2	0
Т	-2	1	0	-2	-1	0
Θ	0	0	0	-1	0	1
	M L T Θ	e M 1 L 2 T -2 Θ 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Write dimension matrix A

•	M L T	e 1 2	t 0 0	r 0 1	<i>c</i> 1 -1	k 0 2	u 0 0	A =	/ 1 2 -2	0 0 1	0 1 0	1 -1 -2	0 2 —1	0 0 0	
	$T \\ \Theta$	-2 0	1 0	0 0	-2 -1	-1 0	0 1		_2 0	1 0	0	$^{-2}_{-1}$	_1 0	$\begin{pmatrix} 0\\1 \end{pmatrix}$	

Process

▶ Row operation
$$A_{n \times m}$$
 $(n < m)$
▶ $r \equiv \operatorname{rank}(A) = n$
 $A_{n \times m} = [R_{n \times n} | T_{n \times (m-n)}] \xrightarrow{\operatorname{row operation} R^{-1}} R^{-1}A = [I_{n \times n} | R^{-1}T]$
▶ $r \equiv \operatorname{rank}(A) < n$
 $A_{n \times m} = [R_{n \times r} | T_{n \times (m-r)}] \xrightarrow{\operatorname{row operation} S} SA = \begin{bmatrix} I_{r \times r} & | & Q \\ 0 & 0 \end{bmatrix}$
note
select columns of quantities wisely to make: $\operatorname{rank}(R) = r$
always holds $\operatorname{rank}(S) \equiv n$

•	<i>A</i> =	$\begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix}$	0 0 1	0 1 0	$1 \\ -1 \\ -2$	0 2 —1	0 0 0	SA =	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 0	0 0 1	0 0 0	0 -1 2	$\begin{bmatrix} 1\\ 0\\ -3 \end{bmatrix}$	
		0	0	0	-1	0	$\binom{1}{1}$		0	0	0	1	0	-1	

Process

$$\blacktriangleright \mathbf{p} = \sum_{i=1}^{n-1} k_i \begin{bmatrix} -Q_i \\ E_i \end{bmatrix} \quad \forall k_i \in \mathbb{R}$$

Exam	ole i	1.7
------	-------	-----

▶
$$p = k_1 \begin{bmatrix} -\begin{pmatrix} 0 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + k_2 \begin{bmatrix} -\begin{pmatrix} 1 \\ 0 \\ -3 \\ -1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} = k_1 \begin{bmatrix} 0 \\ 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

 \blacktriangleright Physical law with π

F($\pi_1, ..., \pi_r$) = 0 with r dimensionless quantities $\pi_1, ..., \pi_r$

•
$$\pi_2 = \frac{cr^3 u}{e} = g(\pi_1) = g(\frac{tk}{r^2})$$

• $u = \frac{e}{cr^3}g(\frac{tk}{r^2})$