
MA 47200-001 Homework 9-Due Nov. 23, 2020 Zhankun Luo

Problem 2

2. Find the general solution of the following partial differential equations in terms of arbitrary
functions

a) uxx + u = 6y, where u = u(x, y)
d) utx + ux = 1, where u = u(x, t)
e) uut = x− t, where u = u(x, t). (Hint: (u2)t = 2uut)

(Section 6.1, Problems 2ade on Page 374, PDF Page 433)

solution
a) uxx + u = 6y, where u = u(x, y)
treat y as a constant value, the characteristic equation is

r2 + 1 = 0, r1 = i, r2 = −i
u = up + uh, up = 6y, uh = c1(y) cos(x) + c2(y) sin(x)

thus
u = 6y + c1(y) cos(x) + c2(y) sin(x)

d) utx + ux = 1, where u = u(x, t)
set v ≡ ∂

∂x
u, it becomes

∂

∂t
v + v = 1

multiply the integrating factor µ(t) = e
∫

1dt = et

∂

∂t

[
etv
]

= et

integrate the equation on both sides

∂

∂x
u = v = e−t

[∫
etdt+ c1(x)

]
= 1 + c′1(x)e−t

integrate the equation on both sides

u =

∫
1 + c′1(x)e−tdx = x+ e−t

∫
c′1(x)dx+ c2(t) = x+ c1(x)e−t + c2(t)

e) uut = x− t, where u = u(x, t). (Hint: (u2)t = 2uut) with (u2)t = 2uut(
u2
)
t

= 2(x− t)
integrate on both sides, treat x as a constant value

u2 =

∫
2(x− t)dt = 2xt− t2 + c1(x)

thus
u = ±

√
2xt− t2 + c1(x)

1
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Problem 3

3. Find a formula for the solution to the (Section 6.1, Problems 3 on Page 374, PDF Page 433)

uxt = f(x, t), x, t > 0

that satisfies the auxiliary conditions u(x, 0) = g(x), x > 0 and u(0, t) = h(t), t > 0, where f, g,
and h are given, well-behaved functions with g(0) = h(0), g′(0) = h′(0)

solution

∂2

∂x′∂t′
u(x′, t′) = f(x′, t′)

integrate t′ from 0 to x

∂

∂x′
u(x′, t)− ∂

∂x′
u(x′, t′)|t′=0 =

∫ t

0

∂2

∂x′∂t′
u(x′, t′)dt′ =

∫ t

0

f(x′, t′)dt′

define ∂
∂x′
u(x′, t′)|t′=0|t′=0 ≡ c′1(x′)

∂

∂x′
u(x′, t) =

∫ t

0

f(x′, t′)dt′ + c′1(x′)

integrate x′ from 0 to x

u(x, t)− h(t) = u(x, t)− u(0, t) =

∫ x

0

∂

∂x′
u(x′, t)dx′ =

∫ x

0

[∫ t

0

f(x′, t′)dt′
]
dx′ + c1(x)

set t = 0, notice that g(0) = h(0)

g(x)− g(0) = u(x, 0)− h(0) =

∫ x

0

0dx′ + c1(x) = c1(x)⇒ c1(x) = g(x)− g(0)

thus

u(x, t) =

∫ x

0

[∫ t

0

f(x′, t′)dt′
]
dx′ + h(t) + g(x)− g(0)
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Problem 4

4. Find the general solution of the first-order linear equation(Section 6.1, Problems 4 on Page 374,
PDF Page 433)

ut + cux = 0

by changing variables to the new spatial coordinate z = x− ct, where c is a constant
(Hint: take τ = t, z = x− ct)

solution
let’s guess there is a linear correspondence τ = a1t+ a2x, z = b1t+ b2x(

∂
∂t
∂
∂x

)
= JT

(
∂
∂τ
∂
∂z

)
=

[∂(τ,z)
∂t

]T[
∂(τ,z)
∂x

]T
( ∂

∂τ
∂
∂z

)
=

(
a1 b1

a2 b2

)(
∂
∂τ
∂
∂z

)
here the equation

[1 c]

(
∂
∂t
∂
∂x

)
u = [1 c]

(
a1 b1

a2 b2

)(
∂
∂τ
∂
∂z

)
u = 0

if we can set

[1 c]

(
a1 b1

a2 b2

)
= [1 0]⇒ [1 0]

(
∂
∂τ
∂
∂z

)
u =

∂

∂τ
u = 0

here we choose [a1, a2] = [1 0], [b1, b2] = [−c 1]

[1 c]

(
1 −c
0 1

)
= [1 0], τ = a1t+ a2x = t, z = b1t+ b2x = −ct+ x

integrate ∂
∂τ
u = 0 on both sides

u(τ, z) =

∫
∂

∂τ
udτ =

∫
0dτ = 0 + C(z) = C(z)

thus
u(t, x) = u(τ, z) = C(z) = C(−ct+ x)



4

Problem 4

4. A homogeneous (constant ρ, C, and K) metal rod has cross-sectional area A(x), 0 < x < l, and
there is only a small variation of A(x) with x, so that the assumption of constant temperature in
any cross section remains valid. There are no sources and the flux is given by −Kux(x, t). From
a conservation law obtain a partial differential equation for the temperature u(x, t) that reflects
the area variation of the bar (Section 6.2, Problems 4 on Page 395)

solution
List the basic laws for the flux J , and the relationship of energy v and temperature u

J(x, t) = −K∂u

∂x
, dv = Cρdu⇔ v = Cρu+ const, f = 0

Consider the conservation law, between arbitrary interval x ∈ [a, b]

d

dt

∫ b

a

v(x, t)A(x)dx = J(a, t)A(a)− J(b, t)A(b)

With Leibniz integral rule, the left side becomes

d

dt

∫ b

a

v(x, t)A(x)dx =

∫ b

a

∂v(x, t)

∂t
A(x)dx =

∫ b

a

A(x)
∂ [Cρu(x, t) + const]

∂t
dx =

∫ b

a

CρA(x)
∂u

∂t
dx

With Fundamental theorem of calculus, the right side becomes

J(a, t)A(a)− J(b, t)A(b) = −
∫ b

a

∂
[
−K ∂u

∂x
A(x)

]
∂x

dx =

∫ b

a

K

[
∂A(x)

∂x

∂u

∂x
+ A(x)

∂2u

∂x2

]
dx

The left hand side equals the right hand side∫ b

a

{
CρA(x)

∂u

∂t
−K

[
dA(x)

dx

∂u

∂x
+ A(x)

∂2u

∂x2

]}
dx = 0

Because it always holds for arbitrary interval [a, b], the function to be integrated must be 0

CρA(x)
∂u

∂t
−K

[
dA(x)

dx

∂u

∂x
+ A(x)

∂2u

∂x2

]
= 0
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Problem 6

6. A fluid, having density ρ, specific heat C, and conductivity K, flows at a constant velocity V
in a cylindrical tube of length L and radius R. The temperature at position x is T = T (x, t), and
diffusion of heat is ignored. As it flows, heat is lost through the lateral side at a rate jointly pro-
portional to the area and to the difference between the temperature Te of the external environment
and the temperature T (x, t) of the fluid (Newton’s law of cooling). Derive a partial differential
differential equation model for the temperature T (x, t). Find the general solution of the equation
by transforming to a moving coordinate system z = x− V t, τ = t
(Section 6.2, Problems 6 on Page 395)

solution
correction:
K should not be the conductivity of diffusion, it should be the Heat transfer coefficient of
Newton cooling, because we neglect the effect of diffusion in the problem. They are different
concepts, thanks to my friend Xiang Li for his explanation, he is a Thermal Engineering graduate
student.

List the basic physical laws
here u is heat energy, J is the heat flux from convection, J̄ is the heat flux from heat loss

du = CρdT ⇔ u = CρT+const, J(x, t) ≈ V u = V [CρT + const] , J̄(x, t) = −K [T (x, t)− Te]
The energy conservation law, in the arbitrary interval [a, b]

d

dt

∫ b

a

u · πR2dx = [J(a, t)− J(b, t)] · πR2 +

∫ b

a

J̄(x, t) · 2πRdx

The left hand side, with Leibniz integral rule

d

dt

∫ b

a

u · πR2dx =

∫ b

a

πR2∂u

∂t
dx =

∫ b

a

πR2∂ [CρT + const]

∂t
dx =

∫ b

a

πR2Cρ

[
∂T

∂t

]
dx

The first term of right hand side, with Fundamental theorem of calculus

[J(a, t)− J(b, t)]·πR2 = −
∫ b

a

πR2∂J(x, t)

∂x
dx = −

∫ b

a

πR2∂ (V [CρT + const])

∂x
dx = −

∫ b

a

πR2Cρ

[
V
∂T

∂x

]
dx

The second term of right hand side∫ b

a

J̄(x, t) · 2πRdx =

∫ b

a

−K [T (x, t)− Te] · 2πRdx = −
∫ b

a

2πRK [T (x, t)− Te] dx

Thus ∫ b

a

{
πR2Cρ

[
∂T

∂t

]
+ πR2Cρ

[
V
∂T

∂x

]
+ 2πRK [T − Te]

}
dx = 0

Because [a, b] ia a arbitrary interval, the function to be integrated must be 0

πR2Cρ

[
∂T

∂t

]
+ πR2Cρ

[
V
∂T

∂x

]
+ 2πRK [T − Te] = 0

Thus [
∂T

∂t
+ V

∂T

∂x

]
+

2K

RCρ
[T − Te] = 0
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Consider the transformation z = x− V t, τ = t

J =
∂(z, τ)

∂(x, t)
=

(
1 −V
0 1

)
,

(
∂T
∂x
∂T
∂t

)
= JT

(
∂T
∂z
∂T
∂τ

)
=

(
1 0
−V 1

)(
∂T
∂z
∂T
∂τ

)
For the first term of equation[

∂T

∂t
+ V

∂T

∂x

]
= (V 1)

(
∂T
∂x
∂T
∂t

)
= (V 1)

(
1 0
−V 1

)(
∂T
∂z
∂T
∂τ

)
= (0 1)

(
∂T
∂z
∂T
∂τ

)
=
∂T (z, τ)

∂τ

The equation becomes
∂T (z, τ)

∂τ
+

2K

RCρ
[T − Te] = 0

(1) When T − Te = 0
T (x, t) = T (z, τ) = Te

(2) When T − Te 6= 0

∂ ln |T − Te|
∂τ

=
d ln |T − Te|
d [T − Te]

∂T (z, τ)

∂τ
=

1

T − Te
∂T (z, τ)

∂τ
= − 2K

RCρ

Integrate on both sides, here C(z) is an arbitrary function

ln |T − Te| =
∫
∂ ln |T − Te|

∂τ
dτ = −

∫
2K

RCρ
dτ = − 2K

RCρ
τ + C(z)

That is, where A(z) 6= 0 for ∀z

T = A(z) exp

(
− 2K

RCρ
τ

)
+ Te

With th transformation z = x− V t, τ = t

T (x, t) = A(x− V t) exp

(
− 2K

RCρ
t

)
+ Te
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Bonus.

If it takes 3 hours to roast a 15 lb turkey, how long will it take to roast a 20 lb one in the same
oven? Give your best estimate and explain your method.

solution
Set symbols as follow:
k ≡ Cρ

K
, where C is Specific heat capacity, ρ is density, K is the heat conductivity

u(r, t) is temperature of turkey, ue is the temperature of oven, u0 is the initial temperature of
turkey, here we treat the the turkey as a sphere of radius R
h is the Heat transfer coefficient of Newton cooling

Based on the Example 6.13 in the textbook, we can write equation

∂u

∂t
= k∆u

u(r, t)|t=0 = u0, −K∂u

∂r
|r=R = h(u− ue)|r=R,

∂u

∂r
|r=0 = 0

Now, define v = u−ue, and the boundary conditions are symmetric for angle angles, thus v = v(r, t)

∆(·) =

[
1

r2

(
∂

∂r

[
r2 ∂

∂r

])
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

]
(·)

Thus
∂v

∂t
= k

1

r2

(
∂

∂r

[
r2∂v

∂r

])
v(r, t)|t=0 = u0 − ue,

(
hv +K

∂v

∂r

)
|r=R = 0,

∂v

∂r
|r=0 = 0

Consider to write the function v as the weighted sum of separable vn = yn(r)φn(t)

v(r, t) =
∑

cnyn(r)φn(t)⇒
− 1
r2

(
d
dr

[
r2 dyn(r)

dr

])
yn(r)

=
−dφn(t)

dt

kφn(t)
= λ̄n

It leads to

− 1

r2

(
d

dr

[
r2dyn
dr

])
= λ̄nyn

−dφn(t)

dt
= kλ̄nφn(t)

Here we can solve φn(t)

φn(t) = e−kλ̄nt

Let’s come back to the yn

−
(
d

dr

[
r2dyn
dr

])
= λ̄nr

2yn(
hyn +K

dyn
dr

)
|r=R = 0,

dyn
dr
|r=0 = 0

To eliminate R, assume heat transfer�heat diffusion, h� K
R

at r = R. Substitute x ≡ r/R,

−
(
d

dx

[
x2dyn
dx

])
= λ̄nR

2x2yn = λnx
2yn
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yn|x=1 = 0,
dyn
dx
|x=0 = 0

So, we have the the correspondence, here λn is a fixed value for any R

λ̄n =
λn
R2
, φn(t) = e−kλn

t
R2

The equation of yn is a SL problem, here λn is the eigenvalue, yn is the corresponding eigenfunction

L = − d

dx

[
p(x)

d

dx

]
+ q(x), p(x) = x2, q(x) = 0

Lyn = λnw(x)yn, w(x) = x2

We can verify that∫ b

a

yn
d

dx

[
p(x)

dym
dx

]
dx =

[
ynp(x)

dym
dx

]b
a

−
∫ b

a

p(x)
dyn
dx

dym
dx

dx symmetric form

∫ b

a

ynq(x)ymdx symmetric form

Thus ∫ b

a

ynLym − ymLyn =

[
ymp(x)

dyn
dx
− ynp(x)

dym
dx

]b
a

=

[
p(x)

(
ym
dyn
dx
− yn

dym
dx

)]b
a

Set [a, b] = [0, 1], notice p(0) = 0, dyn
dx
|x=0 = 0, dym

dx
|x=0 = 0[

p(x)

(
ym
dyn
dx
− yn

dym
dx

)]1

0

= 0− 0 = 0

∫ 1

0

ynLym − ymLyn =

∫ 1

0

ynλmw(x)ym − ymλnw(x)yn = 0

We can define the bracket as

〈f, g〉 =

∫ 1

0

f w(x) gdx, 〈yn, λmym〉 =

∫ 1

0

ynw(x)λmymdx, 〈λnyn, ym〉 =

∫ 1

0

λnynw(x)ymdx

〈λnyn, ym〉 = 〈yn, λmym〉
For λn 6= λm

〈yn, ym〉 = 0⇔ (λn − λm)〈yn, ym〉 = 0⇔ 〈λnyn, ym〉 = 〈yn, λmym〉
If λn has multiple eigenfunctions yn, y

′
n, Gram–Schmidt process can make sure 〈yn, y′n〉 = 0

Currently, we can calculate cn, with the boundary condition

v(r, t)|t=0 =
∑

cnyn

( r
R

)
φn(t)|t=0 =

∑
cnyn(x)e−kλn

t
R2 |t=0 =

∑
cnyn(x) = u0 − ue

(u0 − ue) 〈1, yn〉 = 〈u0 − ue, yn〉 = 〈
∑

cnyn, yn〉 = cn〈yn, yn〉
Thus

cn = (u0 − ue)
〈1, yn〉
〈yn, yn〉

= (u0 − ue)
∫ 1

0
1 w(x)yndx∫ 1

0
ynw(x)yndx

= (u0 − ue)
∫ 1

0
x2yndx∫ 1

0
x2y2

ndx

u(r, t) = v(r, t) + ue = (u0 − ue)

[∑ ∫ 1

0
x2yndx∫ 1

0
x2y2

ndx
yn

( r
R

)
e−kλn

t
R2

]
+ ue
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Expand the eigenfunction y(x) =
∑∞

k=0 akx
k, compare the coefficient of xk

−(k + 1)kak = λak−2 ⇒
ak
ak−2

=
(−λ)

(k + 1)k
,

dy

dx
|x=0 = a1 = 0⇒ a2k+1 = 0, k ∈ Z∗

notice that, set y(0) = a0 = 1

a2k

a0

=
k∏
l=1

a2l

a2l−2

=
k∏
l=1

(−λ)

(l + 1)l
=

(−λ)k

(2k + 1)!
⇒ a2k =

(−λ)k

(2k + 1)!

With the boundary condition for eigenfunction y(1) = 0

y(1) =
∞∑
k=0

a2k =
∞∑
k=0

(−λ)k

(2k + 1)!
=

1√
λ

∞∑
k=0

(−1)k
(
√
λ)2k+1

(2k + 1)!
=

sin
√
λ√

λ
= 0

Thus √
λn = nπ ⇒ λn = n2π2, yn(x) =

∞∑
k=0

(−n2π2)k

(2k + 1)!
x2k =

sin(nπx)

nπx
, n ∈ Z+

For the coefficientcn

cn =

∫ 1

0
x2yndx∫ 1

0
x2y2

ndx
=

∫ 1

0
x2 sin(nπx)

nπx
dx∫ 1

0
x2 sin2(nπx)

n2π2x2
dx

=
(−1)n+1

n2π2

1
2n2π2

= 2(−1)n+1

u(r, t) = (u0 − ue)

[
∞∑
n=1

2(−1)n+1 sin(nπ r
R

)

nπ r
R

e−kn
2π2 t

R2

]
+ ue

The meaning of the cooked turkey is that the inner temperature must reach the temperature
threshold uth at the cooked time t∗. i.e. u(r, t)|r=0,t=t∗ = uth

u(r, t)|r=0,t=t∗ = (u0 − ue)

[
∞∑
n=1

2(−1)n+1e−kn
2π2 t∗

R2

]
+ ue = uth

notice that λn, yn, k, ue, u0 won’t change when the radius R of turkey changes, it implies

t∗

R2
= f

(
uth − ue
u0 − ue

)
/k = const

That is the relationship of cooking time t∗ and radius R,
under the assumption: heat transfer � heat diffusion, i.e. i.e. h� K

R
at r = R

R3

m
=

3

4πρ
= const

Finally

t∗

m
2
3

=
t∗

R2
·
[
R3

m

] 2
3

= const

It takes t∗1=3 hours to roast m1=15 lb turkey, we wan to know how long will it take t∗2 to roast a
m2 =20 lb one in the same oven

t∗1

m
2
3
1

=
t∗2

m
2
3
2

= const =⇒ t∗2 =

(
m2

m1

) 2
3

t∗1 =

(
20

15

) 2
3

· 3 = 3.634241 ≈ 3.63

To sum up, it take t∗2 ≈ 3.63 hours to roast a m2 = 20 lb one in the same oven
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Journal.

Compare and contrast the derivation of Equation (1.3)(steady-state heat conduction equa-
tion) in Section 5.1 and of Equation (2.7)(reaction–diffusion equations) in Section 6.2

− d

dx

(
K(x)

T (x)

dx

)
= f(x), 0 < x < L (1.3)

ut = Duxx + f(x, t, u) (2.7)

Discuss how the conservation law is used in the two cases. Why in one case we obtain an ordinary
differential equation, but in the other case we obtain a partial differential equation?
note: come from (Fourier’s law), and (Fick’s law)
where K(x): thermal conductivity, D: diffusion constant

φ(x) = −K(x)
T (x)

dx
(Fourier’s law)

J(x, t) = −Dux(x, t) (Fick’s law)

and basic equation (steady-state assumption), and (local form of the conservation law)

φ′(x) = f(x) (steady-state assumption)

ut +∇ · J = f(x, t, u) (local form of the conservation law)

solution
(1) Derivation of (2.7)(reaction–diffusion equations)

In the one dimension scenario, x becomes x, ∇ · J becomes ∂J(x,t)
∂x

ut +
∂J(x, t)

∂x
= f(x, t, u)

With (Fick’s law)

ut +
∂ [−Dux(x, t)]

∂x
= ut −D

∂ux(x, t)

∂x
= ut −Duxx = f(x, t, u)

That is (2.7)(reaction–diffusion equations)

ut = Duxx + f(x, t, u)

(2) Derivation of (1.3)(steady-state heat conduction equation)

For steady-state, u(x, t) = u(x), ut = 0, ux = du(x)
dx

, and J(x, t) = φ(x), f(x, t, u) = f(x)
Notice that

du(x) = C(x)ρ(x)dT (x)⇒ du(x)

dx
= C(x)ρ(x)

dT (x)

dx
Thus, with (Fick’s law)

φ(x) = J(x, t) = −Dux(x, t) = −Ddu(x)

dx
= −DC(x)ρ(x)

dT (x)

dx
= −K(x)

dT (x)

dx
Here we define the conductivity K(x) ≡ DC(x)ρ(x), that is (Fourier’s law)
The conservation law is

0 +
dφ(x)

dx
= ut +

∂J(x, t)

∂x
= f(x, t, u) = f(x)

To substitute φ(x) = −K(x)dT (x)
dx

, that is (1.3)(steady-state heat conduction equation)

− d

dx

(
K(x)

T (x)

dx

)
= f(x)


