
MA 47200-001 Homework 8-Due Nov. 04, 2020 Zhankun Luo

Problem 8

8. Find the eigenvalues λ for the boundary value problem

−u′′ − 2u′ = λu, 0 < x < 1
u(0) = 0, u(1) = 0

(Section 5.1, Problem 8(on Page 284), PDF Page 333)

solution
The characteristic equation

−r2 − 2r = λ

The roots r1, r2 has r1 + r2 = −2, r1r2 = λ
(a) r1 6= r2
the solution is in form of

u = c1e
r1t + c2e

r2t

thus
u(0) = c1 + c2 = 0⇒ c2 = −c1

u(1) = c1e
r1 + c2e

r2 = c1(e
r1 − er2) = 0⇒ c1 = −c2 = 0

Then u = 0, it is not eigenfunction, there is no eigenvalue λ
(b) r1 = r2
thus r1 = r2 = −1, consequently, λ = r1r2 = 1 the solution is in form of

u = (c1 + c2t)e
r1t = (c1 + c2t)e

−t

thus
u(0) = c1 = 0

u(1) = (c1 + c2)e
−1 = c2e

−1 = 0⇒ c− 2 = 0

Then u = 0, it is not eigenfunction, there is no eigenvalue λ
Conclusion: to sum up (a)(b), there is no eigenvalue λ
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Problem 1

1. Show that the SLP
−y′′(x) = λy(x), 0 < x < l

y(0) = 0, y(l) = 0

has eigenvalues λn = n2π2/l2 and corresponding eigenfunctions yn(x) = sin(nπx/l), n = 1, 2, · · ·
(Subsection 5.2.2, Problems 1(on Pages 300–301), PDF Page 351)

solution
The characteristic equation

−r2 = λ

The roots r1, r2 has r1 + r2 = 0, r1r2 = λ
(a) r1 6= r2
the solution is in form of

y = c1e
r1x + c2e

r2x

thus, r1 = −r2 6= 0
y(0) = c1 + c2 = 0⇒ c2 = −c1

y(l) = c1e
r1l + c2e

r2l = c1(e
r1l − e−r1l)

because u 6= 0⇒ c1 6= 0, thus

er1l − e−r1l = 0⇔ e2r1l = 1⇔ 2r1l = n · 2πi⇔ r1 = nπi/l, n ∈ Z, n 6= 0

that is
r1 = nπi/l, r2 = −nπi/l, λn = r1r2 = n2π2/l2 n ∈ Z+

the eigenfunction is
yn = c1(e

r1x − e−r1x) = 2c1i sin(nπx/l)

select 2c1i = 1
yn = sin(nπx/l)

(b) r1 = r2
thus r1 = −r2 = 0, λ = r1r2 = 0
the solution in form of

y = c1 + c2t

here y(0) = 0, y(l) = 0, makes c1 = c2 = 0, thus y = 0, so there is no eigenfunction

Conclusion: to sum up (a)(b), eigenvalues λn = n2π2/l2 have corresponding eigenfunctions
yn(x) = sin(nπx/l), n ∈ Z+
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Problem 3

3. Find the eigenvalues and eigenfunctions for the problem with periodic boundary conditions:

−y′′(x) = λy(x), 0 < x < l

y(0) = y(l), y′(0) = y′(l)

(Hint for Problem 3: A system of linearhomogeneous equations has nonzero solutions if and only
if the determinant of the coefficient matrix iszero.)
(Subsection 5.2.2, Problems 3(on Pages 300–301), PDF Page 351)

solution
The characteristic equation, roots r1, r2 have r1 + r2 = 0, r1r2 = λ

−r2 = λ

(a) r1 6= r2
the solution is in form of, here r1 = −r2 6= 0

y = c1e
r1x + c2e

r2x = c1e
r1x + c2e

−r1x

thus
y(0) = c1 + c2 = c1e

r1l + c2e
−r1l = y(l)⇒ [er1l − 1 e−r1l − 1] · [c1 c2]T = 0

y′(0) = c1r1 − c2r1 = c1r1e
r1l − c2r1e−r1l = y(l)⇒ [r1(e

r1l − 1) − r1(e−r1l − 1)] · [c1 c2]T = 0

combine them (
er1l − 1 e−r1l − 1

r1(e
r1l − 1) − r1(e−r1l − 1)

)(
c1
c2

)
= ~0

because for eigenfunction it must has nonzero function for [c1 c2]
T , thus∣∣∣∣ er1l − 1 e−r1l − 1

r1(e
r1l − 1) − r1(e−r1l − 1)

∣∣∣∣ = 2r1e
−r1l(er1l − 1)2 = 0

so that
er1l − 1 = 0⇔ r1l = n · 2πi⇔ r1 = 2nπi/l, n ∈ Z, n 6= 0

that is
r1 = 2nπi/l, r2 = −2nπi/l, λn = r1r2 = 4n2π2/l2 n ∈ Z+

respectively (
c1
c2

)
= k1

(
1/2
1/2

)
+ k2

(
−(1/2)i
(1/2)i

)
when (k1, k2) = (1, 0) the eigenfunction is

yn = cos(2nπx/l)

when (k1, k2) = (0, 1) the eigenfunction is

y∗n = sin(2nπx/l)

(b) r1 = r2
thus r1 = −r2 = 0, λ = r1r2 = 0
the solution in form of

y = c1 + c2t

y(0) = y(l), y′(0) = y′(l), make c2 = 0, thus y = c1 · 1, so there is eigenfunction y0 = 1 for λ0 = 0

Conclusion: to sum up (a)(b), eigenvalues λn = 4n2π2/l2 have corresponding eigenfunctions
yn = cos(2nπx/l), y∗n = sin(2nπx/l) n ∈ Z+, moreover, for λ0 = 0, the eigenfunction y0 = 1
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Problem 1

1. Verify that the set of functions cos(nπx/l), n = 0, 1, 2 · · · , form an orthogonal set on the interval
[0, l]. If (Subsection 5.2.3, Problems 1(on Page 308), PDF Page 360)

f(x) =
∞∑
n=0

cn cos
(nπx

l

)
converges in the mean-square sense on [0, l], what are the formula for the cn? This series is called
the Fourier cosine series on [0, l]. Find the Fourier cosine series for f(x) = 1− x on [0, 1]

solution
For the function fn = cos(nπx/l)

(fn, fn) =

∫ l

0

fnf̄ndx =

∫ l

0

cos2
(nπx

l

)
dx =

∫ l

0

[1/2 + cos

(
2nπx

l

)
]dx =

{
l
2

n 6= 0

l n = 0

For different functions fn = cos(nπx/l), fm = cos(mπx/l), here n 6= m

(fn, fm) =

∫ l

0

fnf̄mdx =

∫ l

0

cos
(nπx

l

)
cos
(mπx

l

)
dx =

1

2

∫ l

0

cos

(
(n+m)πx

l

)
+cos

(
(n−m)πx

l

)
dx = 0

(1) from above, we verify the set of functions cos(nπx/l), n ∈ Z∗, form an orthogonal set on [0, l]
(2) consider the formula for the cn

(f, fn) = (

[
∞∑
m=0

cmfm

]
, fn) =

∞∑
m=0

cm(fm, fn) = cn(fn, fn) =

{
cn

l
2

n 6= 0

cnl n = 0

that is

c0 =
1

l
(f, f0) =

1

l

∫ l

0

f(x)dx

cn =
2

l
(f, fn) =

2

l

∫ l

0

f(x) cos
(nπx

l

)
dx n 6= 0

(3) f(x) = 1− x on [0, 1], here l = 1, the function fn = cos(nπx)

c0 =

∫ 1

0

[1− x]dx =
1

2

cn = 2

∫ 1

0

[1− x] cos (nπx) dx n 6= 0

here for n 6= 0 ∫ 1

0

cos (nπx) dx =
1

nπ
sin (nπx) |10 = 0∫ 1

0

x cos (nπx) dx =
1

nπ

[
x sin (nπx) |10 −

∫ 1

0

sin (nπx) dx

]
=

1

nπ

[
0 +

1

nπ
cos (nπx) |10

]
=

1

(nπ)2
[(−1)n − 1]

we conclude

c0 =
1

2
, cn =

2

(nπ)2
[1− (−1)n] n 6= 0

Fourier cosine series for f(x) = 1− x on [0, 1]

f(x) =
∞∑
n=0

cnfn =
1

2
+
∞∑
n=1

2

(nπ)2
[1− (−1)n] cos(nπx)
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Problem 2

2. Let f be defined and integrable on [0, l]. (Subsection 5.2.3, Problems 2(on Page 308), PDF
Page 360) The orthogonal expansion

f(x) =
∞∑
n=1

bn sin
nπx

l
, bn =

2

l

∫ l

0

f(x) sin
(nπx

l

)
dx

is called the Fourier sine series for f on [0, 1].
Find the Fourier sine series for f(x) = cos x on [0, π/2].
What is the Fourier sine series of f(x) = sin x on [0, π]?

solution
(1) Fourier sine series of f(x) = cos x on [0, π/2], here l = π/2, for n ∈ Z+

bn =
4

π

∫ π/2

0

cosx · sin(2nx)dx =
2

π

∫ π/2

0

sin((2n+ 1)x) + sin((2n− 1)x)dx

= − 2

π

[
cos((2n+ 1)x)|π/20

2n+ 1
+

cos((2n− 1)x)|π/20

2n− 1

]

=
2

π

[
1− 0

2n+ 1
+

1− 0

2n− 1

]
=

2

π

4n

4n2 − 1
=

8n

π(4n2 − 1)

thus

f(x) = cos x =
∞∑
n=1

8n

π(4n2 − 1)
sin(2nx)

(2) Fourier sine series of f(x) = sin x on [0, π], here l = π, for n ∈ Z+

bn =
2

π

∫ π

0

sinx · sin(nx)dx =
1

π

∫ π

0

cos((n− 1)x)− cos((n+ 1)x)dx

=

{
1
π
π = 1 n = 1

1
π

[
sin((n−1)x)|π0

n−1 − sin((n+1)x)|π0
n+1

]
= 0 n 6= 1, n ∈ Z+

that is

bn =

{
1 n = 1

0 n 6= 1, n ∈ Z+

thus

sinx =
∞∑
n=1

bn sin(nx) = sinx
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Bonus.

In class (on Oct. 26) we derived the boundary value problem for the hanging cable

y′′ = a

√
1 + (y′)2, y(−h) = y(h) = 0

where a = gρ/K. Solve this problem and use software to graph the solution with a = h = 1
(Problem 1 on Page 165, PDF Page 197)

solution
Substitute v ≡ y′

dv

dx
= a
√

1 + v2

thus

sinh−1(v) = ln(
√

1 + v2 + v) =

∫
dv√

1 + v2
= a

∫
dx = ax+ c1

so that
dy

dx
= v = sinh(ax+ c1) =

eax+c1 − e−(ax+c1)

2
then

y =

∫
sinh(ax+ c1)dx =

eax+c1 + e−(ax+c1)

2a
+ c0 =

cosh(ax+ c1)

a
+ c0

with boundary conditions

y(h) =
cosh(ah+ c1)

a
+ c0 = 0, y(−h) =

cosh(−ah+ c1)

a
+ c0 = 0

thus for c1, c2
−ac0 = cosh(ah+ c1) = cosh(−ah+ c1)

because cosh(·) is a even function, and is a strictly increasing function for x > 0

ah+ c1 = −ah+ c1 or (ah+ c1) + (−ah+ c1) = 2c1 = 0

here ah 6= 0, so c1 = 0, c0 = − cosh(ah)
a

y =
cosh(ax)− cosh(ah)

a

Figure 1. y = cosh(ax)−cosh(ah)
a , where a = h = 1
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Journal.

Compare and contrast the eigenvalue problems for square matrices and for differential operators.
In particular, discuss the difference and similarity regarding the number of eigenvalues and the
meaning of orthogonality.

solution
Differential operator L
Think about the general equation

d2

dx2
y + α(x)

d

dx
y + β(x)y = f(x)

We can all convert into this form

− d

dx

[
p(x)

dy

dx

]
+ q(x)y = λw(x)f(x)

We want to expand y, f in such form

y =
∞∑
n=0

cnyn, f(x) =
∞∑
n=0

dnyn

To calculate cn, assume: for eigenvalue λn = dn/cn, we have eigenfunction yn
For the SL problem, here x ∈ [a, b], the operator L

Lyn = − d

dx

[
p(x)

dyn
dx

]
+ q(x)yn = λnw(x)yn

Ly =
∞∑
n=0

cnλnw(x)yn = w(x)
∞∑
n=0

dnyn = w(x)f(x)

Now, if λn, yn are known, we want to find the expression of dn, then we can conclude cn = dn/λn
Guess there is a bracket operator 〈·, ·〉

〈f, yn〉 = dn〈yn, yn〉+
∑
m 6=n

dm〈ym, yn〉

If 〈ym, yn〉 = 0 for m 6= n, we can conclude dn = 〈f, yn〉/〈yn, yn〉
So, what the bracket operator 〈·, ·〉 should be, let’s guess, for λn 6= λm

〈yn, ym〉 = 0⇔ (λn − λm)〈yn, ym〉 = 0⇔ 〈λnyn, ym〉 = 〈yn, λmym〉

think about the relationship λnw(x)yn = Lyn notice that formula∫ b

a

yn
d

dx

[
p(x)

dym
dx

]
dx =

[
ynp(x)

dym
dx

]b
a

−
∫ b

a

p(x)
dyn
dx

dym
dx

dx symmetric form

∫ b

a

ynq(x)ymdx symmetric form

here ∫ b

a

ynLym − ymLyn =

[
ymp(x)

dyn
dx
− ynp(x)

dym
dx

]b
a

=

[
p(x)

(
ym
dyn
dx
− yn

dym
dx

)]b
a
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If we have (i) p(a) = p(b) = 0, (ii) p(a) = p(b), yn(a) = yn(b), y′n(a) = y′n(b),
(iii) α1yn(a) + α2y

′
n(a) = 0, β1yn(b) + β2y

′
n(b) = 0 for all n∫ b

a

ynLym − ymLyn =

∫ b

a

ynλmw(x)ym − ymλnw(x)yn = 0

now we can define the bracket as

〈u, v〉 =

∫ b

a

u w(x) vdx, 〈yn, λmym〉 =

∫ b

a

ynw(x)λmymdx, 〈λnyn, ym〉 =

∫ b

a

λnynw(x)ymdx

〈λnyn, ym〉 = 〈yn, λmym〉
If λn has multiple eigenfunctions ym, y

′
n, Gram–Schmidt process can make sure 〈yn, y′n〉 = 0

Square matrice A
For square matrix A

AX = b

we can first expand X =
∑
cnXn, b =

∑
dnXn, then assume we have independent equations

cnAXn = dnXn ⇔ AXn = (dn/cn)Xn = λnXn

once we know dn, λn, we can determine cn = dn/λn directly
especially, when AT = A, for λn 6= λm

λnX
T
mXn = XT

mAXn = XT
mA

TXn = λmX
T
mXn ⇔ XT

mXn = 0

here we obtain dn with

XT
n b = XT

n

∑
dnXn = dnX

T
nXn ⇒ dn = XT

n b/X
T
nXn

If λn has multiple eigenvectors Xn, X
′
n, Gram–Schmidt process can make sure XT

nX
′
n = 0

Similarity
The operator L, square matrixA, they both use the orthogonality:〈ym, yn〉 = 0, XT

mXn = 0 (m 6= n)
to determine the coefficients cn of components: eigenfunction yn, eigenvector Xn

Difference
For the operator L, it could have infinite countable eigenvalues
especially, when it satisfy (iii) α1yn(a) + α2y

′
n(a) = 0, β1yn(b) + β2y

′
n(b) = 0 for all n,

each λn only has one eigenfunction yn,
otherwise, with eigenfunctions yn, y

′
n, (iii)⇒ W (a) = 0⇒ W (x) = 0⇒ yn, y

′
n linearly dependent

(note: λn could have multiple eigenfunctions fn (e.g. section 5.2.2 Problem 3)
when it satisfies (i) p(a) = p(b) = 0 or (ii) p(a) = p(b), yn(a) = yn(b), y′n(a) = y′n(b) instead of (iii))

For the square matrix A = AT , it only has finite eigenvalues,
each λn could have multiple eigenfunction Xn


