MA 47200-001 Homework 7-Due Oct. 28, 2020 Zhankun Luo

PROBLEM 12

12. In Section 1.3 we obtained the initial value problem

Fh_ L ) =0, WO)=1 0<e<1

- = , =, =1, £

dt? (1+¢h)?
governing the motion of a projectile. Use regular perturbation theory to obtain a three-term
perturbation approximation. Up to the accuracy of 2 terms, determine the value ¢,, when h is
maximum. Find hpyay = h(t,,) up through order £* terms.

(Problem 12 on Page 167, PDF Page 199)

solution
Notice ﬁ =3 ,(n+1)z™, substitute x = —ch

d2h = n+lin_n
n=0

Expand h(e,t) with e
h(e,t) = yo(t) + yi(t)e + yalt)e® + - -

Substitute h(e,t) = yo(t) + v1(t)e + y2(t)e* + - -+ in % =32 J(n+1)(=1)Ftpnen
Compare the coefficients of 1, ¢, % respectively

Ly =-1

1
= (D (o =200

1 2
82 ;yg = (1 + 1)(—1)1+1 (1) U + (2 + 1)(_1)2+1 (2) y(2) = 2y1 — 31/(2)

Initial condition h(g,0) = yo(0) + y1(0)e + y2(0)e? + - - - = 0, compare the coefficients of ¥, k € N
0(0) = 41(0) = 3(0) = --- =0
Initial condition h/(g,0) = y(0) + 3/;(0)e + y4(0)e? + - - - = 1, compare the coefficients of e k € N
w(0) =1, 41(0) = 52(0) =--- =0
For yo, solve y) = —1

1 1
Yop = _§t27y0h = it + €2, Yo = Yop + Yor = —5152 +al+c

With initial conditions
0(0)=c=0,900)=c1=1=c¢;=1,c0=0

1 2
Yo = ——t" 4+t
For Y1, solve yi/ = 2y0 = —tz + 2t

= 1t4+1t3 =it + =y, + 1t4+1t3+ t+
=—— c c - c c
Yip B 3 Yih = C1 2, Y0 = Yip T Y1in = 19 3 1 2

1



With initial conditions
y1(0)=c2=0,91(0)=c1 =0=¢;,=0,c0 =0
1 1

n=TRt Ty
For yy, solve yf = 2y1 — 3y = —3t* + 213 — 3(—5t + 1)%% = —5t* + 543 — 3¢°
Lo, My Ly t+ + Ll
=—— —t> — - =c c = = —— = c c
Yop 360 60 1 » Y2n 1 2, Y0 = Y2p T Y2n 1 2

12 3
With initial conditions

Y2(0) =2 =0,95(0) =c1=0=¢; =0,c0 =0

11 1. 1
V2= 360" Tt T 1
In all
= Ly
Yo = 5
1 1
A
=ttty
11 1. 1
Yo = 16 4 45 4 (1)

360 60 4
h(e,t) = yo(t) + y1(t)e + y2(t)e?
1 1 1 11 11, 1
B L R A g8 2| _ 1146 205 L
[2+]+€{12 +3]+5 3600 60 4

Calculate the partial derivatives of function h(e,t)

1 1 1 11 1. 1
he,t) = |—5t* +1 o o] e |t o ]
=0 [2+}+€[12 NN B T T L
Oh(e,1) Ly o] o 11, 11, .
=|-t+1 —5t" 1 S -
o +]+6{ 3T TR T +
82h(5 t) 9 ) 11 . 11
—n =1 —t* + 2t —— = =3+
o012 [~1]+¢ [ + } +e 3 + ; +
FOI' tmax(g) Should have (1) azgig,t) |t:tmax < 0 hOldS fOI. 0 <ek 1, (11) ahéi,t) ‘t:tmax _ O
tmax(g) = Qo + ale -+ a252 + ..
Substitute fya(€) = o+ a1¢ + aze® + -+ into 2ED|,_, 0 compare coefficients of £*
l:—ap+1=0

O] 30 (-
Q] B0 Q0] L0 50 (4] -

For 1, we have ag = 1

For ¢, we have

—a1+5=0=a =3



© oo ~ [=2] w [ w [ -

L o e =
~ (=] (e [ w [V - o

=
oo

For €2, we have

To sum up, for ty.x(€)
tmax () 1+ 2e 4 22 4
max(€) = 5€ -€ U
3 5
Substitute tmax(e) = 14 3¢ + 2e” + -+ into h(e, t)]i=4,.,, calculate coefficients of e*

1/2 1
Li—( )12 +1=2
2(2) 73

L0

o 1 56 2]+ T2 4 71
12 45 5 72 9 9 7172 8
Finally, for the t,, = tmax(€), Amax = h(&, 1) |i=tp,
2 2 1 1 1
=14+ = Ze2 4. =_ 4 = Ze2 gl 2
tm, +35+55+ ) hmax 2+4€+8€+ ()

We can verify it with MATLAB code, for example when ¢ = 0.02

clear; clc; close all

eps = 0.02;

dgdt = @(t, h) —1./ (1 + epsxh)."2; % g'= h; h''=g'=—1./ (l+epsxh). 2
func = @Q(t, sol) [sol(2,:); dgdt(t, sol(1,:))];

hO = 0; g0 = 1; sol0 = [h0 g0];

tspan = (0:0.000002:1.2) 7,

[t,s0l] = ode23(func, tspan, sol0);

[h, g] = deal(sol(:, 1), sol(:, 2));

plot (t,h, 'b—"); xlabel(’St$’ ", Interpreter’ 'latex’);
ylabel ("$h$’, 'Interpreter’, ’latex’); grid on;

title ('Sh(\varepsilon, t)$’, Interpreter’,’ latex’);
[homax, ind] = max(h); % find h_max

tom = t(ind); % find t.m

fprintf( 'numerical :t.m=%.6f, hmax=%.6f\n", t_m, h_max);
func_tm = @Q(eps) 1 + (2/3) % eps + (2/5) * eps 2;
func_hmax = @Q(eps) 1/2 + (1/4) % eps + (1/8) * eps”2;
fprintf(’theoretical :t-m=%.6f, h.max=%.6f\n",

func_tm (eps) ,func_hmax(eps));

The numerical results and theoretical results when € = 0.02

numerical :t-m=1.013498, h_max=0.505053
theoretical :t-m=1.013493, h_.max=0.505050




PROBLEM 1

1. A homogeneous bar of length 40 cm has its left and right ends held at 30 °C and 10 °C', respec-
tively. If the temperature in the bar is in steady state,what is the temperature in the cross-section
12 ¢m from the left end? If the thermal conductivity is K, what is the rate that heat is leaving
the bar at its right face?

(Problems 1 on Page 283, PDF Page 332)

solution
Write the physic law
— (K(2)u'(2)) = f(x), 0<z<40
u(0) = 30, u(40) = 10
heat flux ¢(x) = —K(x)u'(x) at  (the rate that heat is leaving in the right direction at z)
here K(z) = K, f(z)=0
— Ku'(z) =0, 0<x<40

u(0) = 30, u(40) = 10
Set u(x) = ¢ + ¢y, consider the boundary conditions
1
u(0) = ¢y =30, u(40) =cy+c¢1-40=10= ¢y =30, ¢; = ~5
Thus ]
u(m):30—§x, 0<z<40
(1) the temperature in the cross-section 12 cm from the left end
1
u(12) =30 - 512 =24 (1)
(2) the rate that heat is leaving the bar at its right face
that is heat flux ¢(z) = —K(z)u/'(z) = —Ku/(x) at = = 40

1

S oto = — K (2)|omso = — K (_5) _ g



PROBLEM 2

2. The thermal conductivity of a bar of length L = 20 and cross-sectional area A = 2 is K(x) = 1,
and an internal heat source is given by f(x) = 0.5z(L — z). If both ends of the bar are maintained
at zero degrees, what is the steady-state temperature distribution in the bar? Sketch a graph of
u(x). What is the rate that heat is leaving the bar at = = 207

(Problems 2 on Page 283, PDF Page 332)

solution
Write the physic law
— (K (2)d/(z)) = f(z), 0<z<20

u(0) = 0, u(20) = 0
heat flux ¢(x) = —K(x)u'(x) at = (the rate that heat is leaving in the right direction at z)
here K(z) =1, f(z) = 0.52(20 — x)
1
—u'(z) = 5x(20 —z), 0<z<20
u(0) =0, u(20)=0

Integrate for 2 times

1 1 1 5)
u= / (/ u”da:) dr = / (/ —ix(ZO — x)dx) dr = / [gx?’ — 5% + 61:| dr = ﬂx4—§x3+clx+co

Consider the boundary conditions
1 5 2000

u(0) = g = 0, u(20) = ﬁ204 — 5203 a2+ =0=c=——, c=0
(1) the steady-state temperature distribution in the bar
1 5 2000
u:ﬂx‘l—gm‘?’ Tm, 0<z<20 (1)
, , , S
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FIGURE 1. the graph of u(z)



oo ~ =] ot - w [ -

clear; clc; close all

func = @Q(x) (1/24) * x."4 — (5/3) * x.”3 + (2000/6) * x;
x = (0:0.01:20) ’;

u = func(x);

plot(x, u); ylim ([0, inf]); grid on;

xlabel (’$x$’, Interpreter ’, ’latex ’);

ylabel (’$u$’, Interpreter’, latex’);

title ("Su(x)$’, Interpreter’,’latex’);

(2) the rate that heat is leaving the bar at = 20
that is heat flux ¢(z) = —K(z)u/(z) = —u/(x) at x = 20

1 2
o(z) = —u'(z) = — | Za® — 5o + 2000
6 6
o 1 2000 2000
a=20 = — | =20° =5 - 20° =—
¢()]2=20 [6 0°—5-20"+ — } 5




PROBLEM 5

5. Consider the nonlinear heat flow problem
(wu') =0, O<z<m
uw(0) =0, u(r)=1
where the thermal conductivity depends on temperature and is given by K(u) = u. Find the

steady-state temperature distribution.
(Problems 5 on Page 283, PDF Page 332)

solution
Firstly set the coefficient ¢

(u') = 0 & uu' = ¢y & udu = codx

Integrate on both sides

1
§u2 = /udu = /codx =cox + 1
For u(0) =0
1
502:CO'O+01 (1)
Because of uu’ = ¢
(uu/)2 =ct
- )
%uQ cor + ¢
For v/(7) =1
2 C%
2.1 = (2)
Com + €1

Combine (1), (2)

Thus is ]
§u2:27ra7(:)u2:47m:>u:—|—\/47r:17, 0<z<m (3)



Bonus.

1. In a spring-mass problem assume that the restoring force is —ky and that there is a resistive
force numerically equal to agy?, where k and a are constants with appropriate units. With initial
conditions y(0) = A,y(0) = 0, determine the correct time and displacement scales for small
damping and show that the problem can be written in dimensionless form as

g +e(@) +y=0
y(0)=1, ¢ (0)=0

where ¢ = aA/m is a dimensionless parameter and prime denotes the derivative with respect to
the scaled time .

In addition, find a two-term approximation for 0 < ¢ < 1. (Note: sin®¢ = (1 — cos 2t))
(Problem 1 on Page 165, PDF Page 197)

solution
We can write the physical law as

& +a ()" +ky =0
y(0) =4, Flo=0
Now we define § = y/y.,t = t/t., it becomes
_ 2 _.2 _
[%} m‘% + [f—g} a (%) + [y] ky =0
v 5(0) = A, Gro=0

That is )
el 5 (@) + e =0
y(0) = L%] A Y, =0
Compare the coefficients of g, 7(0) we have
k 1
] ko, H A=1
m Ye
So, the characteristic scale ., t.
m
tc = Ea Ye = A (1)
Then equation becomes
d?F | aA (dg\? | -
@+ () +y=0
g<0) = 1a d_y|f=0 =0

here £ = %4 that is

m?

Expand the (e, ?)
y(e,t) = yo(t) +yu(t)e + -
Substitute (e, ) = yo(t) + y1(f)e + - - - into equation, compare the coefficients of ¥
Liyg +yo =0
ey + (yo)* +y1 =0



For the initial conditions
§(0) =5o(0) + 41 (0)e +--- =1, 7(0) =y5(0) + 41 (0)e+--- =0

Compare the coefficients of ¥

For yo(t), solve
Yo +y0 =0, ¥0(0) =1,40(0) =0
Set yo(t) = ¢1 sin(t) + ¢z cos(?)
yo(O) =Cy = 1,y6(0) =c=0=c¢=0,c0=1

Yo(t) = cos(t)
For y;(t), solve
Wt = () = — + 5 eos2D, 1(0) =0,44,(0) =0
Set y1(t) = y1,(t) + c1sin(t) + ¢ cos(f), for yi,(f) = —1 + ¢o cos(2t)
(—4co + co) cos(2t) = %cos(%_) = ¢y = —é

s0, y1(t) = —3 — £ cos(2f) + ¢ sin(f) + ¢z cos(?)

1 1 2
yl(O):—5—6+02=0,y/1(0):cl:0:>01:0,0225
(7) = —= — = cos(20) + = cos(])

n =73 6COS 3Cos

To sum up

Yo(t) = cos(?)

1 2 1
n(t) = 513 cos(t) — G cos(2t)

yle,t) = yo(t) +yr(t)e +--- (2)

1 2 1
=cos(t) + ¢ 5t gcos(t_) — 6603(21?) + -



10
JOURNAL.

Compare and contrast initial value problems and boundary value problems. In particular, explain
how many initial /boundary conditions are needed, and what are different types of initial /boundary
conditions.

solution
If we have N undetermined coefficients in equations, then N initial/boundary conditions are
needed.

For the equation
(p@)y) +qlz)y =Ay, a<z<b
The equation is usually accompanied by homogeneous boundary conditions on y(x) of the form
ary(a) + azy'(a) =0, Sriy(b) + Boy'(b) =0
Especially, two special cases of the boundary conditions are
y(a) =0,y(b) =0, (Dirichlet conditions ]
y'(a) =0,y'(b) =0. (Ncumann conditions)



