
MA 47200-001 Homework 6-Due Oct. 21, 2020 Zhankun Luo

Problem 4

4. Find the values of µ where solutions bifurcate and examine the stability of the origin in each
case. (Problems 4af on Page 108, PDF Page 131 )

a) x′ = x+ µy, y′ = µx+ y
f) x′ = y, y′ = x2 − x+ µy

solution
a) The nullclines: 0 = x+ µy, 0 = µx+ y
Of course, (0, 0) is one critical point

A =

(
1 µ
µ 1

)
, |A− λI| = λ2 − pλ+ q = λ2 − 2λ+ (1− µ2) = 0

With Vieta theorem, ∆ = 22 − 4× (1− µ2) = 4µ2, λ1 + λ2 = p = 2 > 0, λ1λ2 = q = 1− µ2

For different values of µ
condition 1: q = 0,∆ 6= 0, one eigenvalue λ1 = 0
q = 1− µ2,∆ = 4µ2 6= 0⇔ µ = ±1
the other eigenvalue λ2 = p = 2 > 0
critical point is a unstable borderline

condition 2: ∆ = 0, q 6= 0, repeated real eigenvalues λ1 = λ2 = p
2

∆ = 4µ2 = 0, q = 1− µ2 6= 0⇔ µ = 0
repeated real eigenvalues λ1 = λ2 = p

2
= 1 > 0

critical point is a unstable node
(A− λI)w = 0 eigenvector w1, w2: proper node: star X = (c1w1 + c2w2)e

λt

condition 3: ∆ > 0, q > 0, eigenvalues are both positive λ1 > 0, λ2 > 0
∆ = 4µ2 > 0, q = 1− µ2 > 0⇔ −1 < µ < 1, µ 6= 0
critical point is an unstable node

condition 4: ∆ > 0, q < 0, signs fo eigenvalues are opposite λ1 > 0, λ2 < 0
∆ = 4µ2 > 0, q = 1− µ2 < 0⇔ µ < −1 or 1 < µ
critical point is a unstable saddle
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f) The nullclines: 0 = y, 0 = x2 − x+ µy, of course, (0, 0) is one critical point
Consider the Jacobian J , at the critical point (0, 0)

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
0 1

2x− 1 µ

)
, J(0,0) =

(
0 1
−1 µ

)
|J − λI| = λ2 − pλ+ q = λ2 − µλ+ 1 = 0

With Vieta theorem, ∆ = µ2 − 4× 1 = µ2 − 4, λ1 + λ2 = p = µ > 0, λ1λ2 = q = 1
condition 1: ∆ = 0, q 6= 0, repeated real eigenvalues λ1 = λ2 = p

2

∆ = µ2 − 4 = 0, q = 1 6= 0⇔ µ = ±2

• µ = −2 repeated real eigenvalues λ1 = λ2 = p
2

= µ
2

= −1 < 0
critical point is a stable node
(J − λI)w = 0, (J − λI)v = w: improper node X = c1we

λt + c2(w + vt)eλt

• µ = +2 repeated real eigenvalues λ1 = λ2 = p
2

= µ
2

= +1 > 0
critical point is an unstable node
(J − λI)w = 0, (J − λI)v = w: improper node X = c1we

λt + c2(w + vt)eλt

condition 2: ∆ > 0, q > 0, eigenvalues have the same signs λ1 < λ2 < 0 or λ1 > λ2 > 0
∆ = µ2 − 4 > 0, q = 1 > 0⇔ µ < −2 or 2 < µ

• p = µ < 0⇒ µ < −2 real eigenvalues λ1 < λ2 < 0
critical point is a stable node
• p = µ > 0⇒ +2 < µ real eigenvalues λ1 > λ2 > 0

critical point is an unstable node

condition 3: ∆ < 0, p = 0, real part of eigenvalues Re(λ1) = Re(λ2) = p
2

= 0
∆ = µ2 − 4 < 0, p = µ = 0⇔ µ = 0
we can’t determine if the spiral is stable with Jacobian
solve x′ = y, y′ = x2 − x⇒ x′′ = x2 − x, with the substitution x′′ = dx′

dx
dx
dt

= dy
dx
y

dy

dx
y = x2 − x⇔

∫
ydy =

∫
(x2 − x)dx⇔ x2 + y2 − 2

3
x3 = C

critical point is a stable center

(a) C = 0.01 (b) C = 0.1 (c) C = 0.3 (d) C = 1
3

Figure 1. the diagram of p, dpdτ

condition 4: ∆ < 0, p > 0, real part of eigenvalues are both positive Re(λ1) = Re(λ2) = p
2
> 0

∆ = µ2 − 4 < 0, p = µ > 0⇔ 0 < µ < 2
critical point is an unstable spiral
condition 5: ∆ < 0, p > 0, real part of eigenvalues are both negative Re(λ1) = Re(λ2) = p

2
< 0

∆ = µ2 − 4 < 0, p = µ < 0⇔ −2 < µ < 0
critical point is a stable spiral
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Problem 10

10. (Ecology) Let P denote the carbon biomass of plants in an ecosystem, H be the carbon biomass
of herbivores, and φ the rate of primary carbon production in plants due to photosynthesis. A
model of plant-herbivore dynamics is given by (Problem 10 on Page 109, PDF Page 133)

P ′ = φ− aP − bHP
H ′ = εbHP − cH

where a, b, c, and ε are positive parameters.

a) Explain the various terms and parameters in the model and determine the dimensions of
each parameter.

b) Non-dimensionalize the model and find the equilibrium solutions.
c) Analyze the dynamics in the cases of high primary production (φ > ac/εb) and low primary

production (φ < ac/εb). Explain what happens in the system if primary production is slowly
increased from a low value to a high value.

solution

a) For the various terms, [P ] = [H] = M, [φ] = MT−1

For the parameters a, b, c, [aP ] = [a]M = MT−1, [bHP ] = [b]M2 = MT−1, [cH] = [c]M = MT−1,
thus [a] = T−1, [b] = M−1T−1, [c] = T−1

For the parameter ε, [εbHP ] = [ε]M−1T−1M2 = MT−1, thus [ε] = 1 is dimesionless

b) Non-dimensionalize the model
Firstly, the characteristic scale tc to make the coefficient of cH becomes 1

1

tc
= c⇒ tc ≡

1

c

Secondly, the Pc to make the coefficient of εbHP becomes 1

1

tc
= εbPc ⇒ Pc ≡

c

εb

Next, the Hc to make the coefficient of bHP becomes 1

1

tc
= bHc ⇒ Hc ≡

c

b

In the end, with the substitution τ ≡ t/tc, p = P/Pc, h ≡ H/Hc

dp

dτ
= −

(a
c

)
(p− φ

[ac/εb]
)− hp

dh

dτ
= hp− h

Define parameters γ ≡ a
c
, φth ≡ [ac/εb], ϕ ≡ φ

φth

dp

dτ
= −γ(p− φ

φth
)− hp = −γ(p− ϕ)− hp

dh

dτ
= hp− h

(1)
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c) The nullclines of h: 0 = −γ(p− ϕ)− hp⇔ h = γ(−1 + ϕ
p
)

the nullclines of p: 0 = hp− h⇔ h = 0, p = 1
Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
−γ − h −p

h p− 1

)

condition 1 ϕ ≡ φ
φth
≡ φ

[ac/εb]
= 1

the critical point (1, 0) for all p ≥ 0, h ≥ 0

J =

(
−γ −1
0 0

)
, det(J) = 0, |J − λI| = λ2 + γλ = 0

eigenvalues λ1 = 0, λ2 = −γ < 0 the equilibria (1, 0) has the degenerated type:concentrated in
a line −γ(p− 1)− h = 0 (the line go through critical point), is a stable borderline

Figure 2. the phase diagram of ϕ = 1

condition 2 0 < ϕ ≡ φ
φth
≡ φ

[ac/εb]
< 1

the critical point (ϕ, 0) for all p ≥ 0, h ≥ 0

J =

(
−γ −ϕ
0 ϕ− 1

)
, |J − λI| = [λ− (−γ)][λ− (ϕ− 1)] = 0

eigenvalues λ1 = ϕ− 1 < 0, λ2 = −γ < 0 the critical point (ϕ, 0) is a stable node

Figure 3. the phase diagram of 0 < ϕ < 1

condition 3 1 < ϕ ≡ φ
φth
≡ φ

[ac/εb]

the critical points (ϕ, 0), (1, γ(ϕ− 1)) for all p ≥ 0, h ≥ 0

• At (ϕ, 0)

J =

(
−γ −ϕ
0 ϕ− 1

)
, |J − λI| = [λ− (−γ)][λ− (ϕ− 1)] = 0

eigenvalues λ1 = ϕ− 1 > 0, λ2 = −γ < 0 the critical point (ϕ, 0) is a unstable saddle
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• At (1, γ(ϕ− 1))

J =

(
−γϕ −1

γ(ϕ− 1) 0

)
, |J − λI| = λ2 + γϕλ+ γ(ϕ− 1) = λ2 − pλ+ q = 0

With Vieta theorem p = λ1 + λ2 = −γϕ < 0, q = λ1λ2 = γ(ϕ − 1) > 0,∆ = (γϕ)2 −
4γ(ϕ− 1) = (γϕ− 2)2 + 4(γ − 1)
the critical point (1, γ(ϕ− 1)) is always stable
(1) γ ≡ a

c
= 1

(a) if ϕ = 2
γ

= 2

the repeated eigenvalues λ1 = λ2 = −1, like c1we
λ1t + c2(w + vt)eλ1t

the critical point (1, γ(ϕ− 1)) = (1, 1) is a stable improper node
(b) if ϕ 6= 2

γ
= 2

hence, ∆ > 0 always holds, 2 real eigenvalues λ1 < λ2 < 0
the critical point (1, γ(ϕ− 1)) is a stable node

(2) γ ≡ a
c
> 1

hence, ∆ > 0 always holds, it has 2 real eigenvalues λ1 < λ2 < 0
the critical point (1, γ(ϕ− 1)) is a stable node

(3) 0 < γ ≡ a
c
< 1

(a) if ϕ = 2(1±
√
1−γ)

γ

hence ∆ = 0, the repeated eigenvalues λ1 = λ2 = −1∓
√

1− γ, solution is in from
of c1we

λ1t + c2(w + vt)eλ1t

the critical point (1, γ(ϕ−1)) = (1, 2−γ±2
√

1− γ) is a stable improper node

(b) if 2(1−
√
1−γ)

γ
< ϕ < 2(1+

√
1−γ)

γ

hence ∆ < 0, the complex eigenvalues Re(λ1) = Re(λ2) = p
2

= −γϕ/2 < 0
the critical point (1, γ(ϕ− 1)) is a stable spiral

(c) if 0 < ϕ < 2(1−
√
1−γ)

γ
or 2(1+

√
1−γ)

γ
< ϕ

hence ∆ > 0, 2 real eigenvalues λ1 < λ2 < 0
the critical point (1, γ(ϕ− 1)) is a stable node

Figure 4. the phase diagram of 1 < ϕ

As φ increases from low to high, the equilibrium of the biomass (P ∗, H∗) changes as follows:

• For 0 < ϕ ≡ φ
[ac/εb]

≤ 1

stable critical point (p, h) = (ϕ, 0)⇔ equilibria (P ∗, H∗) = (ϕPc, 0) = ( φ
[ac/εb]

c
εb
, 0) = (φ

a
, 0)

• For 1 < ϕ ≡ φ
[ac/εb]

stable critical point (p, h) = (1, γ(ϕ− 1))
⇔ equilibria (P ∗, H∗) = (Pc, γ(ϕ− 1)Hc) = ( c

εb
, a
c
( φ
[ac/εb]

− 1) c
b
) = ( c

εb
, εφ
c
− a

b
)
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Problem 9

To find approximations to the roots of the cubic equation

x3 − 4.001x+ 0.002 = 0

why is it easier to examine the equation (Problem 9 on Page 166, PDF Page 199)

x3 − (4 + ε)x+ 2ε = 0

• Find a two-term approximation to this equation.
• Then use software (e.g. matlab) to solve the above equation and compare the results.

solution
Perturbation is successful when xapprox.(ε)− x(ε)→ 0 at some well-defined rate as ε→ 0
We can find 3 solutions for x3−(4+ε)x+2ε = 0 when ε = 0, that is x0 = 0,−2,+2, corresponding
to 3 continuous functions x = f1(ε), f2(ε), f3(ε), and f1(0) = 0, f2(0) = −2, f3(0) = +2
Expand x = fi(ε), i = 1, 2, 3

fi(ε) = x0 + x1ε+ x2ε
2 + · · ·

Substitute x = fi(x) = x0 + x1ε+ x2ε
2 + · · · in x3 − (4 + ε)x+ 2ε = 0

Compare the coefficients of 1, ε, ε2 respectively

1 :x30 − 4x0 = 0

ε :

(
3

2

)
x20x1 − 4x1 − x0 + 2 = 0

ε2 :

(
3

1

)
x0x

2
1 +

(
3

2

)
x20x2 − 4x2 − x1 = 0

For f1(ε), f1(0) = x0 = 0, we can conclude consequently

x0 = 0⇒ −4x1 + 2 = 0⇒ x1 =
1

2
⇒ −4x2 −

1

2
= 0⇒ x2 = −1

8

f1(ε) = 0 +
1

2
ε− 1

8
ε2 + · · · , x = f1(0.001) ≈ 0 +

1

2
(0.001)− 1

8
(0.001)2 = 0.000499875

For f2(ε), f2(0) = x0 = −2, we can conclude consequently

x0 = −2⇒ 12x1 − 4x1 + 2 + 2 = 0⇒ x1 = −1

2
⇒ −3

2
+ 12x2 − 4x2 +

1

2
= 0⇒ x2 =

1

8

f2(ε) = −2− 1

2
ε+

1

8
ε2 + · · · , x = f2(0.001) ≈ −2− 1

2
(0.001) +

1

8
(0.001)2 = −2.000499875

For f3(ε), f3(0) = x0 = +2, we can conclude consequently

x0 = +2⇒ 12x1− 4x1− 2 + 2 = 0⇒ x1 = 0⇒ 0 + 12x2− 4x2− 0 = 0⇒ x2 = 0⇒ xn = 0(n ≥ 3)

f3(ε) = 2 + 0ε+ 0ε2 + · · · = 2, x = f3(0.001) = 2

Finally we have 2 approximated roots x ≈ 0.000499875,−2.000499875 and one exact root x = 2

1 >> syms x ;
2 >> vpaso lve ( xˆ3 − 4 .001*x + 0 .002 )
3 ans =
4 −2.0004998750624609648232582877001
5 0.00049987506246096482325828770010975
6 2 .0
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Problem 20

20. Find a two-term perturbation solution of

u′ + u =
1

1 + εu
, u(0) = 0, 0 < ε� 1

Use software to plot the approximate solution with ε = 0.1 for 0 ≤ x ≤ 1.
(Problem 20 on Page 169, PDF Page 201)

solution
We can find function u = u(ε, x), and u(0, x) is solution for u′ + u = 1

1+0
= 1, u(0) = 0

Expand u(ε, x) with ε

u(ε, x) = y0(x) + y1(x)ε+ y2(x)ε2 + · · ·
Substitute u(ε, x) = y0(x) + y1(x)ε+ y2(x)ε2 + · · · in u′ + u = 1

1+εu

Compare the coefficients of 1, ε, ε2 respectively

1 :y′0 + y0 = 1

ε :y′1 + y1 = −y0
ε2 :y′2 + y2 = −y1 + y0

Initial condition u(ε, 0) = y0(0) + y1(0)ε+ y2(0)ε2 + · · · = 0, compare the coefficients of εk, k ∈ N

y0(0) = y1(0) = y2(0) = · · · = 0

Solve y0

y0 = e−
∫
1dx

[∫
1 · e

∫
1dxdx

]
= 1 + c0e

−x, y0(0) = 0⇒ y0 = 1− e−x

Solve y1

y1 = e−x
[∫
−(1− e−x) · exdx

]
= e−x [−ex + x+ c2] = −1+xe−x+c1e

−x, y1(0) = 0⇒ y1 = −1+(x+1)e−x

Solve y2

y2 = e−x
[∫

[−(−1 + (x+ 1)e−x) + 1− e−x] · exdx
]

= e−x
[∫

[2− (x+ 2)e−x] · exdx
]

= e−x
[
2ex −

(
1

2
x2 + 2x+ c2

)]
, y2(0) = 0

⇒ y1 = e−x
[
2ex −

(
1

2
x2 + 2x+ 2

)]
= 2−

(
1

2
x2 + 2x+ 2

)
e−x

In all
y0 = 1− e−x

y1 = −1 + (x+ 1)e−x

y2 = 2−
(

1

2
x2 + 2x+ 2

)
e−x

u(ε, x) ≈ y0(x) + y1(x)ε+ y2(x)ε2

=
[
1− e−x

]
+ ε

[
−1 + (x+ 1)e−x

]
+ ε2

[
2−

(
1

2
x2 + 2x+ 2

)
e−x
]
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The close form solution when ε = 0.1 for the separable equation, C is given by u(0) = 0

C − x =
1

14

[
(7 +

√
35) ln | − u+

√
35− 5| − (

√
35− 7) ln |u+

√
35 + 5|

]

Figure 5. the exact u(ε, x) and the approximate u(ε, x) (ε = 0.1)

1 c l e a r ; c l c ; c l o s e a l l
2 % s o l v e u( x ) with ode23 ( )
3 eps = 0 . 1 ;
4 func = @(x , u) 1 / (1 + eps *u) − u ;
5 u0 = 0 ;
6 tspan = ( 0 : 0 . 0 5 : 1 ) ’ ;
7 [ x , u ] = ode23 ( func , tspan , u0 ) ;
8 p lo t (x , u , ’b− ’ ) ; x l a b e l ( ’ $x$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
9 y l a b e l ( ’ $u$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

10 t i t l e ( ’ $u (\ vareps i l on , x )\quad\ v a r e p s i l o n =0.1$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
11 % c a l c approximate u( x )
12 y0 = @( x ) 1 − exp(−x ) ;
13 y1 = @( x ) −1 + ( x + 1) .* exp(−x ) ;
14 y2 = @( x ) 2 − ( x . ˆ2 / 2 + 2 * x + 2) .* exp(−x ) ;
15 u perturb = @( x ) y0 ( x ) + eps * y1 ( x ) + eps ˆ2 * y2 ( x ) ;
16 u approx = u perturb ( tspan ) ;
17 hold on ; p l o t ( tspan , u approx , ’ r * ’ ) ; g r i d on ;
18 l egend ( ’ exact u( x ) ’ , ’ approx . u( x ) ’ ) ;
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Bonus.

16. (Circuits) An RCL circuit with a nonlinear resistance, where the voltage drop across the
resistor is a nonlinear function of current, can be modeled by the Van der Pol equation

x′′ + ρ
(
x2 − 1

)
x′ + x = 0

where ρ is a positive constant, and x(t) is the current.

a) In the phase plane, show that the origin is an unstable equilibrium.
b) Sketch the nullclines and the vector field. What are the possible dynamics? Is there a limit

cycle?

(Problem 16ab on Page 111, PDF Page 134)

solution
With the substitution y = x′

x′ = y

y′ = x′′ = −x− ρ(x2 − 1)y

The nullclines: 0 = y, 0 = −x− ρ(x2 − 1)y
the only critical point is (0, 0)

Figure 6. phase diagram ρ = 1

For the direction in the separated regions:
region 1: y > 0,−x− ρ(x2 − 1)y > 0
(x′, y′) = (y,−x− ρ(x2 − 1)y) = (+,+)
region 2: y < 0,−x− ρ(x2 − 1)y > 0
(x′, y′) = (y,−x− ρ(x2 − 1)y) = (−,+)
region 3: y < 0,−x− ρ(x2 − 1)y < 0
(x′, y′) = (y,−x− ρ(x2 − 1)y) = (−,−)
region 4: y > 0,−x− ρ(x2 − 1)y < 0
(x′, y′) = (y,−x− ρ(x2 − 1)y) = (+,−)

Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
0 1

−1− 2ρxy −ρ(x2 − 1)

)
a) At the critical point (0, 0),

J =

(
0 1
−1 ρ

)
, det(J) 6= 0, |J − λI| = λ2 − ρλ+ 1 = λ2 − pλ+ q = 0

With Vieta theorem, ∆ = ρ2 − 4, p = λ1 + λ2 = Re(λ1) + Re(λ2) = ρ > 0, q = 1
if stable ⇒ Re(λ1) ≤ 0,Re(λ2) ≤ 0⇒ Re(λ1) + Re(λ2) ≤ 0, there is a conflict, (0, 0) is unstable

b) The the nullclines and the vector field are displayed in the figure above

(1) ∆ = ρ2 − 4 = 0⇒ ρ = 2
repeated eigenvalues λ1 = λ2 = 1, solution c1we

λ1t + c2(w + vt)eλ1t

the critical point (0, 0) is an unstable improper node
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(2) ∆ = ρ2 − 4 > 0⇒ 2 < ρ
real eigenvalues λ1 > λ2 > 0
the critical point (0, 0) is an unstable node

(3) ∆ = ρ2 − 4 < 0⇒ 0 < ρ < 2
complex eigenvalues Re(λ1) = Re(λ2) = p

2
= ρ

2
> 0

the critical point (0, 0) is an unstable spiral

Figure 7. the simple closed curve C, where (x′, y′)T · ~n < 0

(Note: Green: x nullcline; Red: y nullcline; Magenta: the simple closed curve C)

Theorem (Poincare-Bendixson Ring Domain Theorem). Suppose R is the finite region of
the plane lying between two simple closed curves C and C̄, and F is the velocity vector field for
the system x′ = f(x, y) y′ = g(x, y). If
(i) at each point of C and C̄, the field F points toward the interior of R, and
(ii) R contains no critical points,
then the system has a closed trajectory lying inside R

See the MIT limit cycle note or go to the url: https://math.mit.edu/~jorloff/suppnotes/

suppnotes03/lc.pdf

https://math.mit.edu/~jorloff/suppnotes/suppnotes03/lc.pdf
https://math.mit.edu/~jorloff/suppnotes/suppnotes03/lc.pdf
https://math.mit.edu/~jorloff/suppnotes/suppnotes03/lc.pdf
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For Poincare-Bendixson Ring Domain Theorem, we construct the simple closed curves first.
curve C consists of C1, C2, C3, C4, C5 and the symmetrical curves C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 of (0, 0)

For (x, y) on C, always holds (x′, y′)T ·~n < 0, here (x′, y′): velocity field, ~n: normal vector at (x, y)
Namely, for all (x, y) on C, velocity field field (x′, y′) points toward the inside of C
Short explanation for (x′, y′)T · ~n < 0 on C1, C2, C3, C4, C5 as follows:

(1) C1 : y = (ρ+ ε1)(x+ x0) + y0
where (−x0, y0) is the intersection of y = − 1

ε1
x and left branch of 0 = −x− ρ(x2 − 1)y

ε1 must satisfy, at (−x0, y0): dy
dx
|(−x0,y0) slope of 0 = −x− ρ(x2− 1)y > (ρ+ ε1) slope of C1

(−x0, y0) =

(
−
√

1 +
ε1
ρ
,

√
1 +

ε1
ρ
/ε1

)
, left brach 0 = −x−ρ(x2−1)y ⇔ y = − 1

2ρ

(
1

x− 1
+

1

x+ 1

)
dy

dx
=

1

ρ

x2 + 1

(x2 − 1)2
,

dy

dx
|(−x0,y0) =

1

ρ

2 + ε1
ρ

( ε1
ρ

)2
=

2ρ+ ε1
ε21

> (ρ+ ε1)⇐ ρ > 0 > −ε1
(

1− ε21
2− ε21

)
We can find 0 < ε1 < 1 to satisfy it, for ∀ρ > 0, it always holds

(x′, y′)T =
(
y,−x− ρ(x2 − 1)y

)T
, ~n = (−ρ− ε1, 1)T

(x′, y′)T · ~n = −
[
(ε1y + x) + ρx2

]
< 0

(2) C2 : y = y1
where (x1, y1) is the intersection of C1 and center branch of 0 = −x− ρ(x2 − 1)y
for (x, y) on C2, it has x > x1 > 0, y = y1 > 0, always holds

(x′, y′)T =
(
y,−x− ρ(x2 − 1)y

)T
, ~n = (0, 1)T

(x′, y′)T ·~n = −x−ρ(x2−1)y =
[
−x1 − ρ(x21 − 1)y1

]
−(x−x1)−(x2−x21)y1 = −(x−x1)−(x2−x21)y1 < 0

(3) C3 : y = − 1
ε2

(x−M) + y1

where (M, y1) satisfies M >
√

1 + 1
ρε2

for (x, y) on C3, it has x > M, y > 0, always holds

(x′, y′)T =
(
y,−x− ρ(x2 − 1)y

)T
, ~n = (1, ε2)

T

(x′, y′)T · ~n = −ε2x− y
[
ρε2(x

2 − 1)− 1
]

= −ε2x− y
[
ρε2(M

2 − 1)− 1
]
− yρε2(x2 −M2) < 0

(4) C4 : x = x2
where (x2, 0) is the intersection of C3 and y = 0
for (x, y) on C4, it has x = x2, y < 0, always holds

(x′, y′)T =
(
y,−x− ρ(x2 − 1)y

)T
, ~n = (1, 0)T

(x′, y′)T · ~n = y < 0

(5) C5 : 0 = −x− ρ(x2 − 1)y right branch
where (x2,−y2) is the intersection of C4 and 0 = −x− ρ(x2 − 1)y right branch

for (x, y) on C5, it has x > x0 =
√

1 + ε1
ρ
> 1, y < 0, always holds

y = − 1

2ρ

(
1

x− 1
+

1

x+ 1

)
,

dy

dx
=

1

ρ

x2 + 1

(x2 − 1)2

(x′, y′)T =
(
y,−x− ρ(x2 − 1)y

)T
= (y, 0)T , ~n = (

dy

dx
,−1)T

(x′, y′)T · ~n = −
[

1

ρ

x2 + 1

(x2 − 1)2

]
(−y) < 0



12

To sum up, (x′, y′)T · ~n < 0 holds on C1, C2, C3, C4, C5, the velocity field is symmetrical to (0, 0).
For the symmetrical curves C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 of (0, 0), (x′, y′)T ·~n < 0 holds on C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 .

Thus, (x′, y′)T · ~n < 0 holds for almost all points on entire C
At each point of C, the field F = (x′, y′)T points toward the inside of C
Now, consider to construct the simple closed curve C̄ (Magenta) near the critical point (0, 0)

(1) ρ > 2,∆ < 0, construct C̄ as below

eigenvalues λ1,2 =
p±
√
p2−4
2

> 0, with (J − λ1,2)w1,2 = 0, find w1,2 = [1,
p±
√
p2−4
2

]T

then X(t) = (x, y)T = c1e
λ1tw1 + c2e

λ2tw2, (x
′, y′)T = c1λ1e

λ1tw1 + c2λ2e
λ2tw2

notice that coefficient (c1λ1e
λ1t, c2λ2e

λ2t) has the same signs as (c1e
λ1t, c2e

λ2t), (c1, c2)
the normal vector at (x, y) is ~n = sgn(c1)

w1

|w1| + sgn(c2)
w2

|w2| , it always holds

(x′, y′)T · ~n =
(
c1λ1e

λ1tw1 + c2λ2e
λ2tw2

)
·
(

sgn(c1)
w1

|w1|
+ sgn(c2)

w2

|w2|

)
=

(
c1λ1e

λ1t|w1|
w1

|w1|
+ c2λ2e

λ2t|w2|
w2

|w2|

)
·
(

sgn(c1λ1e
λ1t|w1|)

w1

|w1|
+ sgn(c2λ2e

λ2t|w2|)
w2

|w2|

)
= (k1~e1 + k2~e2) · (sgn(k1)~e1 + sgn(k2)~e2) (where k1 ≡ c1λ1e

λ1t|w1|, ~e1 ≡
w1

|w1|
)

= |k1|+ |k2|+ (|k1|+ |k2|) sgn(k1k2)~e1 · ~e2 = (|k1|+ |k2|) (1 + sgn(k1k2)~e1 · ~e2) > 0

Figure 8. the simple closed curve C̄ (Magenta) near (0,0) for ρ > 2

(2) 0 < ρ ≤ 2,∆ ≤ 0, construct C̄ as below
it always holds (x′, y′)T · ~n > 0

Figure 9. the simple closed curve C̄ (Magenta) near (0,0) for 0 < ρ ≤ 2

At each point of C̄, the field F = (x′, y′)T points toward the outside of C̄
Conclusion: with Poincare-Bendixson Ring Domain Theorem,
there is a closed trajectory (limit cycle) inside R between two simple closed curves C and C̄
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Journal.

(100-300 words, please type.) Give a description of the regular perturbation method in your own
words. Discuss the idea behind the method, the purpose of the method and the limitations of the
method.

solution
Perturbation develops an expression for the desired solution in terms of a formal power series
in some ”small” parameter ε, namely a perturbation series that quantifies the deviation from the
exactly solvable problem.

y(ε, x1, x2, · · · ) =
+∞∑
k=0

yk(x1, x2, · · · )εk

y0(x1, x2, · · · ) is the known solution to the exactly solvable initial problem and y1(x1, x2, · · · ), y2(x1, x2, · · · ), · · ·
may be found iteratively by a mechanistic procedure. For small ε these higher-order terms in the
series generally could become successively smaller.

Equations arising from mathematical models usually cannot be solved in exact form. The idea
behind perturbation is that we breaks the problem into ”solvable” and ”perturbative” parts.
Perturbation theory is widely used when the problem at hand does not have a known exact
solution, but can be expressed as a ”small” change to a known solvable problem. As a result, the
computations of perturbation could be performed with a very high accuracy.

There are 2 limitations for regular perturbation

• The first one is called a secular term, like t sin t
In the approximation, the correction term

∑∞
k=N yk(t)ε

k cannot be made arbitrarily small
for t ∈ (0,+∞) by choosing ε small enough.
The solution is the Poincaré-Lindstedt Method, that is the a scale transformation, to
avoid the presence of secular terms in the expansion.
• The other one is that regular perturbation assumed a leading term of order unity, and it is

not surprising that it missed some roots. The roots are different order, and one expansion
does not reveal both.
The solution is dominant balancing, that means we examine each term carefully and
determine which ones combine to give a dominant balance.


