
MA 47200-001 Homework 5-Due Oct. 14, 2020 Zhankun Luo

Problem 1.

1. Find the general solution and sketch phase diagrams for the following systems; characterize the
equilibria as to type (node, etc.) and stability. (Problems 1abcd on Page 93, PDF Page 115 )

a) x′ = x− 3y, y′ = −3x+ y
b) x′ = −x+ y, y′ = y
c) x′ = 4y, y′ = −9x
d) x′ = x+ y, y′ = 4x− 2y

solution
a) The nullclines: 0 = x− 3y, 0 = −3x+ y, namely y = 1

3
x, y = 3x

The critical point is (x, y) = (0, 0)
The general solution is, when A is diagonalizable

X(t) = exp(At)X(0) = exp
(
W (Λt)W−1)X(0) = W exp(Λt)W−1X(0)

Find eigenvalue Λ = ( λ1 0
0 λ2

), and eigenvector W = (w1 w2)

|A− λI| =
∣∣∣∣1− λ −3
−3 1− λ

∣∣∣∣ = λ2 − 2λ− 8 = 0

Here λ1 = 4, λ2 = −2,thus for w1, w2

(A− λ1I)w1 =

(
1− λ1 −3
−3 1− λ1

)
w1 =

(
−3 −3
−3 −3

)
w1 = 0, w1 =

[
1
−1

]
(A− λ2I)w2 =

(
1− λ2 −3
−3 1− λ2

)
w2 =

(
3 −3
−3 3

)
w2 = 0, w2 =

[
1
1

]
Finally, where [c1 c2]

T ≡ W−1X(0)

X(t) = W exp(Λt)W−1X(0) =

(
1 1
−1 1

)
diag(e4t, e−2t)

[
c1
c2

]
= c1

[
1
−1

]
e4t + c2

[
1
1

]
e−2t

Figure 1. the phase diagram of a)

For the direction in the separated regions:
region 1: y > 1

3
x, y > 3x

(x′, y′) = (x− 3y,−3x+ y) = (−,+)
region 2: y < 1

3
x, y > 3x

(x′, y′) = (x− 3y,−3x+ y) = (+,+)
region 3: y < 1

3
x, y < 3x

(x′, y′) = (x− 3y,−3x+ y) = (+,−)
region 4: y > 1

3
x, y < 3x

(x′, y′) = (x− 3y,−3x+ y) = (−,−)

The equilibria (0, 0) has saddle structure, is unstable
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b) The nullclines: 0 = −x+ y, 0 = y, namely y = x, y = 0
The critical point is (x, y) = (0, 0)
The general solution is, when A is diagonalizable

X(t) = exp(At)X(0) = exp
(
W (Λt)W−1)X(0) = W exp(Λt)W−1X(0)

Find eigenvalue Λ = ( λ1 0
0 λ2

), and eigenvector W = (w1 w2)

|A− λI| =
∣∣∣∣−1− λ 1

0 1− λ

∣∣∣∣ = λ2 − 1 = 0

Here λ1 = 1, λ2 = −1,thus for w1, w2

(A− λ1I)w1 =

(
−1− λ1 1

0 1− λ1

)
w1 =

(
−2 1
0 0

)
w1 = 0, w1 =

[
1
2

]
(A− λ2I)w2 =

(
−1− λ2 1

0 1− λ2

)
w2 =

(
0 1
0 2

)
w2 = 0, w2 =

[
1
0

]
Finally, where [c1 c2]

T ≡ W−1X(0)

X(t) = W exp(Λt)W−1X(0) =

(
1 1
2 0

)
diag(et, e−t)

[
c1
c2

]
= c1

[
1
2

]
et + c2

[
1
0

]
e−t

Figure 2. the phase diagram of b)

For the direction in the separated regions:
region 1: y > x, y > 0
(x′, y′) = (−x+ y, y) = (+,+)
region 2: y < x, y > 0
(x′, y′) = (−x+ y, y) = (−,+)
region 3: y < x, y < 0
(x′, y′) = (−x+ y, y) = (−,−)
region 4: y > x, y < 0
(x′, y′) = (−x+ y, y) = (+,−)

The equilibria (0, 0) has saddle structure, is unstable
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c) The nullclines: 0 = 4y, 0 = −9x, namely y = 0, x = 0
The critical point is (x, y) = (0, 0)
The general solution is, when A is diagonalizable

X(t) = exp(At)X(0) = exp
(
W (Λt)W−1)X(0) = W exp(Λt)W−1X(0)

Find eigenvalue Λ = ( λ1 0
0 λ2

), and eigenvector W = (w1 w2)

|A− λI| =
∣∣∣∣−λ 4
−9 −λ

∣∣∣∣ = λ2 + 36 = 0

Here λ1 = 6i, λ2 = −6i,thus for w1, w2

(A− λ1I)w1 =

(
−λ1 4
−9 −λ1

)
w1 =

(
−6i 4
−9 −6i

)
w1 = 0, w1 =

[
−2i

3

]
(A− λ2I)w2 =

(
−λ2 4
−9 −λ2

)
w2 =

(
6i 4
−9 6i

)
w2 = 0, w2 =

[
2i
3

]
Finally, where

(
1
2
− 1

2
i

1
2

1
2
i

)
[c1 c2]

T ≡ W−1X(0)

X(t) = W exp(Λt)W−1X(0) =

(
−2i 2i

3 3

)
diag(e6ti, e−6ti)

(
1
2
−1

2
i

1
2

1
2
i

)[
c1
c2

]
=

[
Re

([
2i
3

]
e6ti
)

Im

([
2i
3

]
e6ti
)][

c1
c2

]
= c1

[
−2 sin(6t)
3 cos(6t)

]
+ c2

[
2 cos(6t)
3 sin(6t)

]
Where [

2i
3

]
e6ti =

[
i2 cos(6t)− 2 sin(6t)
3 cos(6t) + i3 sin(6t)

]
=

[
−2 sin(6t)
3 cos(6t)

]
+ i

[
2 cos(6t)
3 sin(6t)

]

Figure 3. the phase diagram of c)

For the direction in the separated regions:
region 1: y > 0, x > 0
(x′, y′) = (4y,−9x) = (+,−)
region 2: y > 0, x < 0
(x′, y′) = (4y,−9x) = (+,+)
region 3: y < 0, x < 0
(x′, y′) = (4y,−9x) = (−,+)
region 4: y < 0, x > 0
(x′, y′) = (4y,−9x) = (−,−)

The equilibria (0, 0) has center structure, is stable
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d) The nullclines: 0 = x+ y, 0 = 4x− 2y, namely y = −x, y = 2x
The critical point is (x, y) = (0, 0)
The general solution is, when A is diagonalizable

X(t) = exp(At)X(0) = exp
(
W (Λt)W−1)X(0) = W exp(Λt)W−1X(0)

Find eigenvalue Λ = ( λ1 0
0 λ2

), and eigenvector W = (w1 w2)

|A− λI| =
∣∣∣∣1− λ 1

4 −2− λ

∣∣∣∣ = λ2 + λ− 6 = 0

Here λ1 = 2, λ2 = −3,thus for w1, w2

(A− λ1I)w1 =

(
1− λ1 1

4 −2− λ1

)
w1 =

(
−1 1
4 −4

)
w1 = 0, w1 =

[
1
1

]
(A− λ2I)w2 =

(
1− λ2 1

4 −2− λ2

)
w2 =

(
4 1
4 1

)
w2 = 0, w2 =

[
1
−4

]
Finally, where [c1 c2]

T ≡ W−1X(0)

X(t) = W exp(Λt)W−1X(0) =

(
1 1
1 −4

)
diag(e2t, e−3t)

[
c1
c2

]
= c1

[
1
1

]
e2t + c2

[
1
−4

]
e−3t

Figure 4. the phase diagram of d)

For the direction in the separated regions:
region 1: y > −x, y > 2x
(x′, y′) = (x+ y, 4x− 2y) = (+,−)
region 2: y < −x, y > 2x
(x′, y′) = (x+ y, 4x− 2y) = (−,−)
region 3: y < −x, y < 2x
(x′, y′) = (x+ y, 4x− 2y) = (−,+)
region 4: y > −x, y < 2x
(x′, y′) = (x+ y, 4x− 2y) = (+,+)

The equilibria (0, 0) has saddle structure, is unstable
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Problem 1.

1. Determine the nature and stability properties of the critical points of the systems, and sketch
the phase diagram: (Problems 1cde on Page 107, PDF Page 131)

c) x′ = y2, y′ = −2/3x
d) x′ = x2 − y2, y′ = x− y
e) x′ = x2 + y2 − 4, y′ = y − 2x

solution
c) The nullclines: 0 = y2, 0 = −2/3x, the critical point is (0, 0)

Figure 5. the phase diagram

For the direction in the separated regions:
region 1: y2 > 0, x > 0
(x′, y′) = (y2,−2/3x) = (+,−)
region 2: y2 > 0, x < 0
(x′, y′) = (y2,−2/3x) = (+,+)

Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
0 2y
−2/3 0

)
At the critical point (0, 0),

J =

(
0 0
−2/3 0

)
, det(J) = 0

The equilibria (0, 0) has the degenerated type: node, is unstable

d) The nullclines: 0 = x2 − y2, 0 = x− y, the critical point is (x0, x0), x0 ∈ R

Figure 6. the phase diagram

For the direction in the separated regions:
region 1: x+ y > 0, x− y > 0
(x′, y′) = (x2 − y2, x− y) = (+,+)
region 2: x+ y < 0, x− y > 0
(x′, y′) = (x2 − y2, x− y) = (−,+)
region 3: x+ y < 0, x− y < 0
(x′, y′) = (x2 − y2, x− y) = (+,−)
region 4: x+ y > 0, x− y < 0
(x′, y′) = (x2 − y2, x− y) = (−,−)

Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
2x −2y
1 −1

)
At the critical point (x0, x0),

J =

(
2x0 −2x0
1 −1

)
, det(J) = 0, |J − λI| = λ2 − (−1 + 2x0)λ = 0

The equilibria (x0, x0) has the degenerated type:concentrated in a line x-y=0 (the line go
through critical point) when x0 < 1/2; distracted from a line x-y=0 (the line go through
critical point) when x0 > 1/2;node, is unstable when x0 = 1/2
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e) The nullclines: 0 = x2 + y2 − 4, 0 = y − 2x, the critical point is ( 2√
5
, 4√

5
), (− 2√

5
,− 4√

5
)

Figure 7. the phase diagram

For the direction in the separated regions:
region 1: x2 + y2 > 4, y > 2x
(x′, y′) = (x2 + y2 − 4, y − 2x) = (+,+)
region 2: x2 + y2 < 4, y > 2x
(x′, y′) = (x2 + y2 − 4, y − 2x) = (−,+)
region 3: x2 + y2 < 4, y < 2x
(x′, y′) = (x2 + y2 − 4, y − 2x) = (−,−)
region 4: x2 + y2 > 4, y < 2x
(x′, y′) = (x2 + y2 − 4, y − 2x) = (+,−)

Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
2x 2y
−2 1

)
At the critical point ( 2√

5
, 4√

5
),

J =

(
4√
5

8√
5

−2 1

)
, det(J) 6= 0, |J − λI| = λ2 + (− 4√

5
− 1)λ+

20√
5

= 0

With Vieta theorem, ∆ = ( 4√
5

+ 1)2 − 4× 20√
5
< 0, λ1 + λ2 = 2Re(λ1) = 2Re(λ1) = 4√

5
+ 1 > 0

The equilibria ( 2√
5
, 4√

5
) has spiral structure, is unstable

At the critical point (− 2√
5
,− 4√

5
),

J =

(
− 4√

5
− 8√

5

−2 1

)
, det(J) 6= 0, |J − λI| = λ2 + (

4√
5
− 1)λ− 20√

5
= 0

With Vieta theorem, ∆ = ( 4√
5
− 1)2 + 4× 20√

5
> 0, λ1λ2 = − 20√

5
< 0

Thus, λ1 > 0, λ2 < 0
The equilibria ( 2√

5
, 4√

5
) has saddle structure, is unstable
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Bonus.

1. Determine the nature and stability properties of the critical points of the systems, and sketch
the phase diagram: (Problem 1a on Page 107, PDF Page 131)

a) x′ = x+ y − 2x2, y′ = −2x+ y + 3y2

solution
a) The nullclines: 0 = x+ y − 2x2, 0 = −2x+ y + 3y2

Thus x(12x3 − 12x2 + 5x− 3) = 0, there is only one real root for 12x3 − 12x2 + 5x− 3 = 0

It is x = 1
6

(
2− 1

3
√

20+
√
401

+
3
√

20 +
√

401

)
≈ 0.85472

The critical points are (0, 0), (0.85472, 0.606374)

Figure 8. the phase diagram

For the direction in the separated regions:
region 1: y > 2x2 − x, 3

2
y2 + 1

2
y > x

(x′, y′) = (x+ y − 2x2,−2x+ y + 3y2) = (+,+)
region 2: y < 2x2 − x, 3

2
y2 + 1

2
y > x

(x′, y′) = (x+ y − 2x2,−2x+ y + 3y2) = (−,+)
region 3: y < 2x2 − x, 3

2
y2 + 1

2
y < x

(x′, y′) = (x+ y − 2x2,−2x+ y + 3y2) = (−,−)
region 4: y > 2x2 − x, 3

2
y2 + 1

2
y < x

(x′, y′) = (x+ y − 2x2,−2x+ y + 3y2) = (+,−)

Consider the Jacobian J

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
1− 4x 1
−2 1 + 6y

)
At the critical point (0, 0),

J =

(
1 1
−2 1

)
, det(J) 6= 0, |J − λI| = λ2 − 2λ+ 3 = 0

With Vieta theorem, ∆ = 22 − 4× 3 < 0, λ1 + λ2 = 2Re(λ1) = 2Re(λ2) = 2 > 0
The equilibria (0, 0) has spiral structure, is unstable

At the critical point (x, y) ≈ (0.85472, 0.606374),

J ≈
(
−2.41888 1
−2 4.638244

)
, det(J) 6= 0, |J − λI| ≈ λ2 − 2.219364λ− 9.21935564672 = 0

With Vieta theorem, ∆ = 2.2193642 + 4× 9.21935564672 > 0, λ1λ2 = −9.21935564672 < 0
Thus, λ1 > 0, λ2 < 0
The equilibria (0, 0) has saddle structure, is unstable
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Journal.

Write a paragraph that will help a student in MA 47200 to understand the concept of phase plane
analysis and linearization method.

solution
The phase plane analysis:
The solutions to the differential equation are a family of functions. Graphically, this can be plotted
in the phase plane like a two-dimensional vector field. Vectors representing the derivatives (x′, y′)
with respect to a parameter t are drawn.

• It refers to graphically determining the existence of limit cycles:
With enough of these arrows in place the system behaviour over the regions of plane can
be visualized and limit cycles can be easily identified with Poincaré-Bendixson theorem.

• It is useful in determining if the critical points are stable or not:
The eigenvalues (roots of |A−λI| = λ2− pλ+ q = 0) indicate the phase plane’s behaviour:

– Separated real eigenvalues ( 6= 0) ∆ > 0, q 6= 0
∗ If the signs are opposite, critical point is a unstable saddle.
∗ If the signs are both positive, critical point is an unstable node.
∗ If the signs are both negative, critical point is a stable node.

– Complex eigenvalues ∆ < 0, q 6= 0
∗ If the real part signs are both positive, critical point is an unstable spiral.
∗ If the real part signs are both negative, critical point is a stable spiral.
∗ If the real part signs are both 0, critical point is a stable center.

– Repeated real eigenvalues ( 6= 0) ∆ = 0, q 6= 0
∗ the eigenvalue is positive p > 0, critical point is a unstable node.

· (A−λI)w = 0 eigenvector w1, w2: proper node: star X = (c1w1 +c2w2)e
λt.

· (A−λI)w = 0, (A−λI)v = w: improper node X = c1we
λt + c2(w+ vt)eλt.

∗ the eigenvalue is negative p < 0, critical point is a stable node.
· (A−λI)w = 0 eigenvector w1, w2: proper node: star X = (c1w1 +c2w2)e

λt.
· (A−λI)w = 0, (A−λI)v = w: improper node X = c1we

λt + c2(w+ vt)eλt.
– One of real eigenvalues = 0 q = 0, p 6= 0

∗ the other eigenvalue is positive p > 0, critical point is a unstable borderline.
∗ the other eigenvalue is negative p < 0, critical point is a stable borderline.

Figure 9. types of phase plane’s behavior
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The linearization method:
Linearization makes it possible to use tools for studying linear systems to analyze the behavior
of a nonlinear systems near a given point. The linearization of a function is the first order
term of Taylor expansion around the point of interest.
For an autonomous systems defined by the equation

d

[
x
y

]
/dt =

[
P (x, y)
Q(x, y)

]
The critical point (x0, y0) satisfies [

0
0

]
=

[
P (x0, y0)
Q(x0, y0)

]
With first order term of Taylor expansion

d

[
x− x0
y − y0

]
/dt = d

[
x
y

]
/dt =

[
P (x, y)
Q(x, y)

]
≈
[
P (x0, y0)
Q(x0, y0)

]
+
∂(P,Q)

∂(x, y)
|(x0,y0)

[
x− x0
y − y0

]
= J(x0, y0)

[
x− x0
y − y0

]
In stability analysis of autonomous systems, one can use the eigenvalues of the Jacobian
J(x0, y0) at the critical point (x0, y0) to determine the stability.


