MA 47200-001 Homework 3—-Due Sep. 16, 2020 Zhankun Luo

PROBLEM 1.

1. Find the general solution of the following differential equations:

solution
(a) First order linear equation u' + p(t)u = q(t), here p(t) = 2
Multiply integrating factor u(t) = e/ PO = ¢f 24t — o2t

!/
(nu(®)) = nt)e
Integrate, then divide by p(t)

1 —t . 6_2t c et
u(t)zw/w)e dt = e 2[ey + ¢

In the end

u(t) = cre™® et (1)
(c) Bernoulli equation u' + p(t)u = ¢(t)u", here n = 2
Multiply v =u=2, let v =u!"" =1 & = (1 — n)u™"u/

w? dt
1 d
- nd_:f) —tv=u""u —tul " = ¢
Then simplify to v’ + p(t)u = ¢(t), here p(t) =t
o £
JE— v = —
dt

142

Multiply integrating factor u(t) = e/ PO = eftdt — ¢3

(o)) = u(t)[~£

Integrate, then divide by u(t), note that erfi(t) = == fot e* ds

™

o(t) = %{;)/ﬂ(t)[_tﬂdt _ e‘t2/2[01 _ /Ot 82652/2ds] — /2 [01 — 1?4 \/gerﬁ (%) }

In the end, replace u = pTE =

S =

et2/2
u(t) = 2)

cp — tet?/2 4+ \/gerﬁ (\%)




(e) Non-homogeneous equation u” 4+ a1u’ + apu = f(t), the general solution u(t) = up(t) + u,(t)

For solution of homogeneous equation uy(t) = cyuq(t) + cous(t), the characteristic equation

7"2+a1r+a0:?"2+9:(), T2 = £33t

To make sure uy,us are linear independent, select

(+3i)t _ (=30t (+3d)t (—3d)t

e e : e +e

uy (t) 5 =sin(3t), wusa(t) 5
i

For the particular solution w,(t) = ¢ (t)u1(t) + ca(t)ua(t) with variation of parameters
Assume to satisfy the conditions (n = 2)

= cos(3t)

n

S @) (@) =0, j=0,...,n—2 (a)

i=1
It leads to

u(j)(t) — Z;1 i
> atul”(t) + Zc;(t) (n=1) ), i=n

Za] (1) = Z G V(1) + >G> aud ()]

i=1 i=1 j=0 (b)

_ Z (=) (4 + ch % 0 = Z Aul" () = f(t)

() (40) - ()

Combine (a), (b)

Wronskian W (t) = |1 ., | satisfies Abel’s identity W (t) = W (to) exp(— ftz an_1d§), here ty =0
| sin(3t) cos(3t) B ! L
wit) = 3cos(3t) —3sin(3t)|,_, exp 0 0d8) =

Use Cramer’s rule to solve (a), (b)

0 wu U] U f(ua(t

(c;@)) |f 02 /il _ (e
u ulp u2 u

CQ(t> 1 |/|u1 u2| %(;)()

Integrate c;(t), ca(t), select constants of integration = 0 for the particular solution w,(t)

(o) = () = (i) = (C hatnd) = o)

1
up(t) = c1(t)ur(t) + ca(t)us(t) = tsin(3t) + 3 cos(3t) In(cos(3t))
In the end, the general solution u(t) = up(t) + u,(t)

u(t) = c1(t) sin(3t) + co(t) cos(3t) + tsin(3t) + % cos(3t) In(cos(3t)) (3)



(1) Non-homogeneous equation u” + aju’ + agu = f(t), the general solution u(t) = us(t) + u,(t)
For solution of homogeneous equation uy(t) = cyuq(t) + cous(t), the characteristic equation

—1++/3i

P 4+ar+a=r’+r+1=0, T2 =

2
To make sure uq, us are linear independent, select
(F5Be _ (F5L0 3 (B0 4 (F580 3
w(t) =" 2_6 L et sin(gt), us(t) = S~ ‘2” L et cos(\/T_t)
i

Method 1: variation of parameters
For the particular solution w,(t) = c1(t)uq(t) + c2(t)ua(t) with variation of parameters
Assume to satisfy the conditions (n = 2)

n

Zc;(:ﬁ)ugj)(x):(], j=0,...,n—2 (a)

=1
It leads to .
Zci(t)ugj)(t), j=0,...,n—1
uf(t) =< " .
> au (1) + > dtu" V), j=n
=1 =1

Za] (1) = Z <<t>u§"*”<t> +> G aud ()]

=1 i=1 7=0 (b)

:Xn: um (¢ +ch xO—Zc V() = f(1)

() (30) = (o 2

Combine (a), (b)

Wronskian W (t) = |41 ./ | satisfies Abel’s identity W (t) = ) exp(— ftz ay_1d€), here to =0

e /sm(‘[t) e cos(% t)

W(t) =
®) e‘t/Q[—% sm(\gt) + *2[ cos(%gt)] e 2~ \ég sm(*{t) cos(\/gt)]

=0
Use Cramer’s rule to solve (a), (b)

0 wu U u

(40 = (ot 2
/ u ui u2 tu t
() o/ | f(W(;)()

Integrate ¢y (t), ca(t), select constants of mtegratlon = 0 for the particular solution w,(t)

s S C"S(f”dt 3
(cl(t)) ( 5 dt) LBt ftez cos(2t)dt

ca(t) ff “1 ) dt fte e_t/zsm fte2 sm(\[t)dt

3—t
1 i V3(t—1)s 2 + (3t — 1) cos

n
_3\/5 (1—3t) sm( >+\/_t—1cos

V3t
2
V3t
2

exp(— /Ot 1d¢) = —5¢

V3



t—l sm(
t

t) 1 .
t)) 3v3 (1 —3t)sin (

[SIIeY

0= () () - (o Lot

1, tet et
_ empon=te ¢
3V3 ( ) 3 3

In the end, the general solution u(t) = up(t) + u,(t)

3 3 tet et
u(t) = cre”/?sin <§t> + c9e Y2 cos <§t> + % _ % (4)

Method 2: undetermined coefficients
Because f(t) = te' is a product of special functions ¢, €', we can set the particular solution w,(t)

u,(t) = (At + B)e'

Sk

\_/l\"

It satisfies
wy +up +u, = (At +2A + B)e' + (At + A+ B)e' + (At + B)e' = [(3A)t + (3A +3B)] ' = te'

Compare the coefficients of te?, ef

(96 -0-(-()

In the end, we can obtain the general solution u(t) = us(t) + u,(t) as well as (4)

3 3 tot t
u(t) = Cleit/Q sin (ét) + cge’t/2 CoS <§t> + e



PROBLEM 4.

4. (Reactor dynamics) Consider a chemical reactor of constant volume V' where a chemical C is
pumped into the reactor at constant concentration and constant flow rate ¢. While in the reactor
it reacts according to C + C — products. The law of mass action dictates that the rate of the
reaction is r = kC?, where k is the rate constant. If the concentration of C in the reactor is given
by C(t), then mass balance leads to the governing equation

(VO = qein — qC — kVC?, C(0) = ¢

Non-dimensionalize the model by selecting the concentration scale to be ¢;,, the input concen-
tration, and a time scale based on the flow-through rate. Determine the equilibria, or constant
solutions, and find a formula for the concentration as a function of time.

solution
Select the concentration scale ¢;,, and time scale t. = % based on the flow-through rate

Non-dimensionalize the model by replacing C,t with C' = C/c;,, t =t/ (%)
Cin |:dé:| o q q

(%) v Ciny; — cmVC_’ —c [k’C_’Q] . cnC(0) = ¢

= V- = Co
— =1-0C — key,—C? .
p C = ke -C CO) ="

Define ¢ = kcin%, a = > it becomes

in

dC _
E:l—c*—ec? C(0) =
Determine the equilibria Coq = Ceqcin by setting % =

Ozl—C’eq—e(j2

eq’

2 _\/1+4€—1
141+ 4e 2

/ \%4
/1+4€_1 1+4]€Cm;—1

Coq > 0= Coq =

The the equilibria Cyq is

Ceq = CeqCin = Tcm - 2]{:% (1)
Method 1: integrate the separable equation
J1+dkein Y —1
If the initial value ¢y = Ceq = qu
q
,/1—1-4/{0111%—1
c(t) = Coq = - (a)
21{:3
Otherwise, separate C, %, then integrate
In | S - In —-—2;1?41“
dcC O =Ytdetl 2¢C+1_ 4 o
/ — = = = v / dt =t +c;
1—C —eC? V1+4e V1 + 4e



(=]

Notice that

In et Qtanh_l(f/elc—%b 260+1<1<:>C*<—'1+4€_1: >
! V1 + de V1 + de 2¢ o
V1+4de 2 coth™ (3 2C + 1 Lo VItde—1 o

> €
v1+4e V1 + 4e ¢ a

2kcg(V/q)+1 )

- Nt
If the initial value ¢y < Coq = —v——

2tanh ! (2eatl) 2tanh ™1 (

_ NiEzT e (VD
where ¢; =
2k% ’ 1 \/1+4E \/1+4kcin(V/q)

/1+4kein ¥
v/1 + 4e tanh ( Vl;‘le (t+ C1)> -1 /14 4k;cin%tanh (T‘l (%t + cl)) —1

C(t) = C(E)Cin = 26 Cin = 2]{:%
(b)
_ 2kcg(V/q)+1
Lo 144kein L —1 2coth™1(2eatl) 2 coth 1(\/0%)
If the initial value ¢g > Ceq = Q, where ¢; = Vitdel _ L 4kein (V/4)
2k; V1+4e \/1+4kcin(V/q)

\

1+4kei, ¥
- \/1+4ecoth<‘/1;“j(t_+ C1)> —1 ,/1+4kcin%coth (Q (%t—i—cl)) -1
t) = t in = in —
c(t) = C(t)c > c s
()
To sum up
4 /1+4kCin%—1 /1+4kCin%—1
for ¢ =
2kY 0 2k Y
! q
_1, 2kco(V/g)+1
Tt dhe ¥ panh (Ve (g 2 R |
(t) n g 2 \% \/1+4kcm(V/q) /1 + 4kcin% -1
A= for ¢y <
2kY 0 kY
I q
_1, 2keq(V/q)+1
1 —|— 4kc Z Coth @ it _|_ 2 coth I(JJT%) o 1
\/ n g 2 \% \/1+4kcin(V/q) /1 + 4kcin% -1
for ¢y >
2k 0 kY

Method 2: solve the Riccati equation
Riccati equations % + C'= —eC? + 1

The general solution C(f) = Cy,(£) + C, (%), where a particular solution C,(f) = Ceq = Y=
And the solution Cy,(#) for a Bernoulli equation (n=2)

e VITEk-1] . dC ] ]
%+ 1+2e% Ch:%—l—\/l—t—élechz—e@%
€



With substitution v = C; " = Cth here assume a # C,

dv (M) —e () = 1_ _ 1

dt a—=Coq o [_@4—1]

Multiply the integrating factor p(t) = e/ PO = of —VIHedl — o—Vi+del

€ 7 € v t
o(f) = ep(f)di = VItdet & [— e~ VIHie | 6\/1+Tec1] — —1+e 1+4e(t+01)]
) V14 4e V14 4e
Notice that v(0) = L

a— [\/1+4571]
2e
1 _ € [_1 + e\/1+4ecl]

o — [_ﬂ+24—1] VI e

Thus
2ea+1 +1
<v1+4€ > — ie\/l+4661
2ea+1 1
V1+4e
.. W/ 144kei, Y —1 “
If the initial value ¢y = acy < Ceq = T 1 & \2/1++415 —-1<0
2ca+t1 —1(2eatl 2 tanh ! (-2kV/O+L
\/ﬁﬂ _ Ve . 2tanh Q/ﬁ) _ (x/1+4kcm(V/q>)
ea - ’ 1= -
\2/1%416 — V1 4e V1 + ke (V/g)
~ 1 1+ 4e 2
R M.
) 2€ —1 — eV1t+4e(t+er)
oVTFIe(i+er) _q
() =Gy +C VT +4e 2 +\/1+4e—1_V1+4€<—e¢m<t‘+c1)+1>_1
= Ch PT T o ] _ ovV/IHe(i+a) % - 2e

VIF detanh (S (7 4 cp)) — 1
a 2e

N .
zk%q < e 120
2eatl —1/2ea+1 2 coth™! (2Rl 1
Ve TN o1 = 2coth (7550) _ Witk
Zeatl _ ’ V14 4e V14 dkew(V/q)
I V1+4e [ 2 }

Vi+ie
v % 1 4 oVTHA(F+ar)

If the initial value ¢y = aciy > Ceq =

Ci(t) =

eV T+4e(t+cy) +1

V1+4e { 2 } L VIFde—1 V14 de <—e¢m<f+c1)_1> -1

C@) =Ch+ CP = ¢ —1 4+ eVitde(t+er) 2¢ N 2¢
v/1 + 4e coth <@ (t+ C1)> -1
- 2e

To sum up, and substitute with C' = C'/ci,, t = t/(%), we can obtain the same expression as (2)



PROBLEM 7.

7. (Biogeography) The MacArthur-Wilson model of the dynamics of species (e.g., bird species)
that inhabit an island located near a mainland was developed in the 1960s. Let N be the number
of species in the source pool on the mainland, and let S = S(¢) be the number of species on the
island. Assume that the rate of change of the number of species is

S'=x—p

where y is colonization rate and p is the extinction rate. In the MacArthur-Wilson model,
S E
=I1{1-—= and =—5
where [ and F are the maximum colonization and extinction rates, respectively.

(a) Over a long time, what is the expected equilibrium for the number of species inhabiting
the island?

(b) Given S(0) = Sy, find an analytic formula for S(¥)

(c) Suppose there are two islands, one large and one small, with the larger island having the
smaller maximum extinction rate. Both have the same colonization rate. Show that the
smaller island will eventually have fewer species.

solution
Establish the equation

dsS S E I+ FE

(a) Determine the expected equilibrium S, by setting % =0

I+E
o:z-(%)seq

The equilibrium Seq is

1
Seq - (I—i——E> N (1)
(b) Given S(0) = Sp, find an analytic formula for S(¢)
ds I+F
— —_— p— [ =
dt+<N>S , S(0) =295
Multiply the integrating factor pu(t) = e/ POd = e/ (FHdt — ((F*)t
dlp(t)S]
= Tu(t
5 p()

Integrate, then divide by p(t)



In the end, S(t) is
S(t) = LI N+ |Sy— L N| e 7 (2)
S \I+E C\I+E

(c) Suppose there are two islands, one large and one small, with the larger island having the
smaller maximum extinction rate. Both have the same colonization rate. Show that the smaller
island will eventually have fewer species.

From (b), for any initial value, the final value S(co) would always be

I
S =limSt)=(——=|N
(00) = Jim S(t) (I+ E)
Now N is the number of species on the mainland, the same maximum colonization rate I
For the large island 1, the maximum extinction rate £}, the final species S1(00)

S1(00) = (IJFIE) N

For the small island 2, the maximum extinction rate Fs, the final species Sy(00)

S2(00) = (IJFIEJ N

Notice the larger island having the smaller maximum extinction rate: E; < FEs

S1(00) = ([JrIEl) N> <[+IE2> N'= (o) (3

It shows that the smaller island 2 will eventually have fewer species Sy(00)

~—



10
Bonus.

8. (Chemical reactors) A large industrial retention pond of volume V| initially free of pollutants,
was subject to the inflow of a contaminant produced in the factory’s processing plant. Over a
period of b days the EPA found that the inflow concentration of the contaminant decreased linearly
(in time) to zero from its initial initial value of a (grams per volume), its flow rate ¢ (volume per
day) being constant. During the b days the spillage rate to the local stream was also ¢. What is
the concentration in the pond after b days? Take V' = 6000 cubic meters, b = 20 days, a = 0.03
grams per cubic meter, and ¢ = 50 cubic meters per day. With these data, how long would it take
for the concentration in the pond to get below a required EPA level of 0.00001 grams per cubic
meter if fresh water is pumped into the pond at the same flow rate, with the same spill over? [Use
software to perform the calculations.]

solution
Establish equations, where ¢, ¢ are the concentration of inflow, the concentration in the pond.
a
d a—-t 0<t<)b
Ve =g —cg, c0)=0, cu=4 b =
dt 0 t>b
(1) For the first stage (0 <t < b)
de ¢ q t
—+=c=—=a(l — - 0)=0, (0<t<b
dt + vc Va( b)’ C( ) ? ( —_ —_ )
Multiply the integrating factor pu(t) = e/ P = eJ ¥ — ¢Vt then integrate
I o [* g
c(t) = —/0 %a(l - %)u(s)ds = aevt/o %(1 — z)evsds

[
:<€ (V V+) Vv )ae‘vt 0<t<b

The concentration in the pond after b days, c¢(b) is approximate 0.002239 (g/m?)

vh_ap—1 . s—1-1
c(b) = (”—V> ae— b — 66—6> 0.03¢™5 ~ 0.002239(g/m?) (1)

a 1
yb 6

(2) For the second stage (b < t)

dC q e%b - %b - ]. _4ay
— 4+ == = — <
i + e 0, «¢(b) ( ae” v’ (b<t)

Set € = 0.00001 grams per cubic meter, c(t.) =€

eV _9p 1 a eb-1_1
In (—q‘g ) +1In(%) In ( & > + In(oe-)
t

%4

e = ; = . ~ 669.335(day) (2)

v 120
It takes 670 days for the concentration to get below a required EPA level of 0.00001 (g/m?)
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JOURNAL.

Write a list of types of differential equations that you have learned to solve in a differential equation
course. For each type of differential equations, write the name of the method that solves this type
of equations. (You do not need to describe the methods in detail, just give their names.)

solution
First order equations

(1) anti-derivatives % = ¢(t)

(2) separable equations dr _ g(t)f

' /—dx—/g(t)dt+0

(3) linear equations a’ + p(t)z = ¢(t)
Multiply the equation by the integrating factor pu(t) = e/ Pt

(Iefp@)dt)’ — g(t)el Pt

Integrated to get
.T(t) = @_fp(t)dt (/ q(t)efp(t)dtdt + C)

(4) Bernoulli equations ' + p(t)z = q(t)z"
The substitution y = z'™", multiply (1 —n)z™"
v+ (1 =n)pt)y = (1 —n)q(t)
Reduce to a linear equation for y = y(t)
(5) Riccati equations o’ + p(t)z = q(t)a® + f(¢)
The general solution x(t) = xp(t) + x,(t), where a particular solution x,(t) is known.
And the solution z;(t) for a Bernoulli equation (n=2)

o) + [p(t) — 2q(t)zp) z), = q(t)z]
(6) homogeneous equations = f(%)

t
The substitution v = t

d
—v=f(v)
Reduce to a separable equation for v = ’U(:L‘)
)
(7) exact equations f(t,z) + g(t, )z’ = 0, and 2L o =5
Then a potential function H(x,t) exists, and H(t, x)=c
(9H OH
- ¢
= flz,1), - =91

In the end, it gives

/ft xg)d /mo [g(to,x’)+/to %dt}d =c



Second order equations

(1) linear equations
e homogeneous equation, constant coefficients 2" + a12” + apx = 0
The characteristic equation, roots are rqy,ry

r? +ar+ag =0

If 71 = ry, the general solution z(t) = (¢ + cot)e™?
Otherwise, the general solution x(t) = c¢e* 4 cpe™?!
e homogeneous equation x” + ay(t)z’ + ag(t)z = 0, solution x;(t) known

t
Wronskian W (t) = W (tg)e™ Joo 1 o can set W (ty) to be an any real number

In the other way

L1 T2

- T2y — Ty = W(t)

. . @ _ W@E) _ W)
Reduce to a first order linear equation, where p(t) = —a 4 (t) = = e

5 + p(t)ze = q(t)
With the substitution v(t) = ”(t) , then integrate
/—d _ W(tO) ftto a1(‘r)d‘rdt
x?

e non-homogenecous equation z” + ay(t)x’ + ao(t)z = f(¢)

fto a1 (

If we know the linear independent solutions x1(t), zo(t) for 2 4+ a1 (t)x’ + ag(t) =0

The general solution x(t) = x5 (t) + x,(z), where z4(t) = c121(t) + coxa(t)

variation of parameters: the particular solution z,(t) = ¢;(t)x1(t) + c2(t)x2(t) sat-

isfies

() (40) - ()

T1 T3 (to)e_ ftto a1 (T)dr

Thus, use Cramer’s rule and integrate, where W( )= o o | =

(20) - (Vi)

e non-homogeneous, special function f(t), constant coefficients x” + a2’ + apx = f(t)

undetermined coefficients:

f(t) are a, €, sin(wt), cos(wt), t", and sums, products of these common functions

Form of source function f(¢) | Trial form of particular solution z,(t)
o) A

aelt APt

Polynomial of degree n At + A, " At + Ay

o sin wt; o cos wt Asinwt + B coswt

aetsinwt; e coswt e"(Asinwt 4+ B coswt)

(2) Cauchy-Euler equation t*x” + bytx’ + boz = 0
The substitution p = In(¢), it leads to

dr = 2/dt = x’j—;dp = 2'tdp

d*z = 2"'dt* = d(dz) = d (2'tdp) = d (2't) dp = ([w”j—;dp} t+ w’%dp) dp = [2"t* + 2/t] dp®
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Thus
dx , d*z dx
- = tx , -
dp dp? dp

Reduce to the homogeneous, constant coefficient equation

— t2 SC//

d*x dx

—+ (b1 —1)— +bpx =0

0 + (b )dp + box

The indicial equation
T’(’I“—1)+b17“+b0:T’2+(b1—1)7"+b0:0

(3) nonlinear equation
e special form x” = f(t,2')
The substitution v = 2/, it becomes first order equation

dv

a :f(t,’(])

e special form z” = f(x,2’)
The substitution v = 2/, it leads to

y_ dat _dvdr _ dv

YT d T dedt dn

Reduce to the first order equation

dv

[z, v)
Higher order equations

(1) linear equations
e homogeneous equation, constant coefficients 2™ + a,_12"Y 4+ ... + qpz =0
The characteristic equation

P Gy " e ag =0
It has m roots ry,ro, - - - , 7,,, the multiplicity of which, respectively, is equal to k1, ko, - - - , kp,

x(t) = (C1 ‘et -+ Ckltkl_l) et ...

+ (Cotipt1 F Crprat + -+ + ™)

e non-homogeneous equation 2™ + a,_1 ()™ 4 - 4+ ag(t)z = f(t)
Linear independent x(t),-- - , z,(t) known for (™ + a,, 1 (£)z™V + .. + ag(t)x =0
The general solution z(t) = x,(t) + zp(x), where x,,(t) = > i | cixi(t)
variation of parameters: the particular solution z,(t) = Y | ¢;(t)x;(t) satisfies
r1(t) zo(t) 0 mu(t) (1) 0
() owp() e a(t) o) [0
G S ORI SO A TOZANIU)
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Thus, use Cramer’s rule and integrate, where Wronskian W (t) = W (tg)e S an-1(r)dr.

and W;(t) is the Wronskian determinant with the i-th column replaced by [00 - ) ]"
Wl(t)
(1) W ()
co(t) Wa(t)
= / WO dt
Wt Wa (0
Cnt) et

e non-homogeneous, special f(t), constant coefficients 2™ +a, 12" 4 - -+ apz = f(t)
undetermined coefficients:
f(t) are a, €', sin(wt), cos(wt), t", and sums, products of these common functions
Form of source function f(¢) | Trial form of particular solution x,(t)
« A

aelt AePt
Polynomial of degree n At + A, " o At + A
a sin wt; a cos wt Asinwt + B coswt

aesinwt;  ae™ coswt e"(Asinwt + B cos wt)




