
MA 47200–001 Homework 3–Due Sep. 16, 2020 Zhankun Luo

Problem 1.

1. Find the general solution of the following differential equations:

(a) u′ + 2u = e−t

(c) u′ − tu = t2u2

(e) u′′ + 9u = 3 sec 3t
(l) u′′ + u′ + u = tet

solution
(a) First order linear equation u′ + p(t)u = q(t), here p(t) = 2
Multiply integrating factor µ(t) ≡ e

∫
p(t)dt = e

∫
2dt = e2t(

µ(t)u(t)
)′

= µ(t)e−t

Integrate, then divide by µ(t)

u(t) =
1

µ(t)

∫
µ(t)e−tdt = e−2t[c1 + et]

In the end
u(t) = c1e

−2t + e−t (1)

(c) Bernoulli equation u′ + p(t)u = q(t)un, here n = 2
Multiply u−n = u−2, let v ≡ u1−n = 1

u
, dv
dt

= (1− n)u−nu′

1

1− n
dv

dt
− tv = u−nu′ − tu1−n = t2

Then simplify to v′ + p(t)u = q(t), here p(t) = t

dv

dt
+ tv = −t2

Multiply integrating factor µ(t) ≡ e
∫
p(t)dt = e

∫
tdt = e

1
2
t2(

µ(t)v(t)
)′

= µ(t)[−t2]

Integrate, then divide by µ(t), note that erfi(t) = 2√
π

∫ t
0
es

2
ds

v(t) =
1

µ(t)

∫
µ(t)[−t2]dt = e−t

2/2[c1 −
∫ t

0

s2es
2/2ds] = e−t

2/2
[
c1 − tet

2/2 +

√
π

2
erfi

(
t√
2

)]
In the end, replace u = v

1
1−n = 1

v

u(t) =
et

2/2

c1 − tet2/2 +
√

π
2

erfi
(

t√
2

) (2)

1
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(e) Non-homogeneous equation u′′ + a1u
′ + a0u = f(t), the general solution u(t) = uh(t) + up(t)

For solution of homogeneous equation uh(t) = c1u1(t) + c2u2(t), the characteristic equation

r2 + a1r + a0 = r2 + 9 = 0, r1,2 = ±3i

To make sure u1, u2 are linear independent, select

u1(t) ≡ e(+3i)t − e(−3i)t

2i
= sin(3t), u2(t) ≡ e(+3i)t + e(−3i)t

2
= cos(3t)

For the particular solution up(t) = c1(t)u1(t) + c2(t)u2(t) with variation of parameters
Assume to satisfy the conditions (n = 2)

n∑
i=1

c′i(x)u
(j)
i (x) = 0, j = 0, . . . , n− 2 (a)

It leads to

u(j)
p (t) =



n∑
i=1

ci(t)u
(j)
i (t), j = 0, . . . , n− 1

n∑
i=1

ci(t)u
(n)
i (t) +

n∑
i=1

c′i(t)u
(n−1)
i (t), j = n

The non-homogeneous equation becomes (an = 1)
n∑
j=0

aju
(j)
p (t) =

n∑
i=1

c′i(t)u
(n−1)
i (t) +

n∑
i=1

ci(t)[
n∑
j=0

aju
(j)
i (t)]

=
n∑
i=1

c′i(t)u
(n−1)
i (t) +

n∑
i=1

ci(t)× 0 =
n∑
i=1

c′i(t)u
(n−1)
i (t) = f(t)

(b)

Combine (a), (b) (
u1 u2

u′1 u′2

)(
c′1(t)
c′2(t)

)
=

(
0
f(t)

)
Wronskian W (t) ≡ | u1 u2

u′1 u
′
2
| satisfies Abel’s identity W (t) = W (t0) exp(−

∫ t
t0
an−1dξ), here t0 = 0

W (t) =

∣∣∣∣ sin(3t) cos(3t)
3 cos(3t) −3 sin(3t)

∣∣∣∣
t=0

exp(−
∫ t

0

0dξ) = −3

Use Cramer’s rule to solve (a), (b)(
c′1(t)
c′2(t)

)
=

(
| 0 u2

f(t) u′2
|/| u1 u2

u′1 u
′
2
|

| u1 0
u′1 f(t) |/|

u1 u2

u′1 u
′
2
|

)
=

(
−f(t)u2(t)

W (t)
f(t)u1(t)
W (t)

)
Integrate c1(t), c2(t), select constants of integration = 0 for the particular solution up(t)(

c1(t)
c2(t)

)
=

(
−
∫ f(t)u2(t)

W (t)
dt∫ f(t)u1(t)

W (t)
dt

)
=

(
−
∫ 3 sec(3t) cos(3t)

−3
dt∫ 3 sec(3t) sin(3t)

−3
dt

)
=

( ∫
1dt

−
∫

tan(3t)dt

)
=

(
t

1
3

ln(cos(3t))

)

up(t) = c1(t)u1(t) + c2(t)u2(t) = t sin(3t) +
1

3
cos(3t) ln(cos(3t))

In the end, the general solution u(t) = uh(t) + up(t)

u(t) = c1(t) sin(3t) + c2(t) cos(3t) + t sin(3t) +
1

3
cos(3t) ln(cos(3t)) (3)
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(l) Non-homogeneous equation u′′ + a1u
′ + a0u = f(t), the general solution u(t) = uh(t) + up(t)

For solution of homogeneous equation uh(t) = c1u1(t) + c2u2(t), the characteristic equation

r2 + a1r + a0 = r2 + r + 1 = 0, r1,2 =
−1±

√
3i

2
To make sure u1, u2 are linear independent, select

u1(t) ≡ e(−1+
√

3i
2

)t − e(−1−
√

3i
2

)t

2i
= e−t/2 sin(

√
3

2
t), u2(t) ≡ e(−1+

√
3i

2
)t + e(−1−

√
3i

2
)t

2
= e−t/2 cos(

√
3

2
t)

Method 1: variation of parameters
For the particular solution up(t) = c1(t)u1(t) + c2(t)u2(t) with variation of parameters
Assume to satisfy the conditions (n = 2)

n∑
i=1

c′i(x)u
(j)
i (x) = 0, j = 0, . . . , n− 2 (a)

It leads to

u(j)
p (t) =



n∑
i=1

ci(t)u
(j)
i (t), j = 0, . . . , n− 1

n∑
i=1

ci(t)u
(n)
i (t) +

n∑
i=1

c′i(t)u
(n−1)
i (t), j = n

The non-homogeneous equation becomes (an = 1)
n∑
j=0

aju
(j)
p (t) =

n∑
i=1

c′i(t)u
(n−1)
i (t) +

n∑
i=1

ci(t)[
n∑
j=0

aju
(j)
i (t)]

=
n∑
i=1

c′i(t)u
(n−1)
i (t) +

n∑
i=1

ci(t)× 0 =
n∑
i=1

c′i(t)u
(n−1)
i (t) = f(t)

(b)

Combine (a), (b) (
u1 u2

u′1 u′2

)(
c′1(t)
c′2(t)

)
=

(
0
f(t)

)
Wronskian W (t) ≡ | u1 u2

u′1 u
′
2
| satisfies Abel’s identity W (t) = W (t0) exp(−

∫ t
t0
an−1dξ), here t0 = 0

W (t) =

∣∣∣∣∣ e−t/2 sin(
√

3
2
t) e−t/2 cos(

√
3

2
t)

e−t/2[−1
2

sin(
√

3
2
t) +

√
3

2
cos(

√
3

2
t)] e−t/2[−

√
3

2
sin(

√
3

2
t)− 1

2
cos(

√
3

2
t)]

∣∣∣∣∣
t=0

exp(−
∫ t

0

1dξ) = −
√

3

2
e−t

Use Cramer’s rule to solve (a), (b)(
c′1(t)
c′2(t)

)
=

(
| 0 u2

f(t) u′2
|/| u1 u2

u′1 u
′
2
|

| u1 0
u′1 f(t) |/|

u1 u2

u′1 u
′
2
|

)
=

(
−f(t)u2(t)

W (t)
f(t)u1(t)
W (t)

)
Integrate c1(t), c2(t), select constants of integration = 0 for the particular solution up(t)(

c1(t)
c2(t)

)
=

(
−
∫ f(t)u2(t)

W (t)
dt∫ f(t)u1(t)

W (t)
dt

)
=

−
∫ tete−t/2 cos(

√
3

2
t)

−
√

3
2
e−t

dt∫ tete−t/2 sin(
√

3
2
t)

−
√

3
2
e−t

dt

 =
2√
3

( ∫
te

3
2
t cos(

√
3

2
t)dt

−
∫
te

3
2
t sin(

√
3

2
t)dt

)

=
1

3
√

3
e

3
2
t

(√3(t− 1) sin
(√

3t
2

)
+ (3t− 1) cos

(√
3t
2

))(
(1− 3t) sin

(√
3t
2

)
+
√

3(t− 1) cos
(√

3t
2

))
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up(t) =

(
u1(t)
u2(t)

)T (
c1(t)
c2(t)

)
= e−t/2

(
sin(

√
3

2
t)

cos(
√

3
2
t)

)T
1

3
√

3
e

3
2
t

(√3(t− 1) sin
(√

3t
2

)
+ (3t− 1) cos

(√
3t
2

))(
(1− 3t) sin

(√
3t
2

)
+
√

3(t− 1) cos
(√

3t
2

))
=

1

3
√

3
et
√

3(t− 1) =
tet

3
− et

3

In the end, the general solution u(t) = uh(t) + up(t)

u(t) = c1e
−t/2 sin

(√
3

2
t

)
+ c2e

−t/2 cos

(√
3

2
t

)
+
tet

3
− et

3
(4)

Method 2: undetermined coefficients
Because f(t) = tet is a product of special functions t, et, we can set the particular solution up(t)

up(t) = (At+B)et

It satisfies

u′′p + u′p + up = (At+ 2A+B)et + (At+ A+B)et + (At+B)et = [(3A)t+ (3A+ 3B)] et = tet

Compare the coefficients of tet, et(
3 0
3 3

)(
A
B

)
=

(
1
0

)
=⇒

(
A
B

)
=

(
1
3
−1

3

)
up(t) =

tet

3
− et

3
In the end, we can obtain the general solution u(t) = uh(t) + up(t) as well as (4)

u(t) = c1e
−t/2 sin

(√
3

2
t

)
+ c2e

−t/2 cos

(√
3

2
t

)
+
tet

3
− et

3
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Problem 4.

4. (Reactor dynamics) Consider a chemical reactor of constant volume V where a chemical C is
pumped into the reactor at constant concentration and constant flow rate q. While in the reactor
it reacts according to C + C → products. The law of mass action dictates that the rate of the
reaction is r = kC2, where k is the rate constant. If the concentration of C in the reactor is given
by C(t), then mass balance leads to the governing equation

(V C)′ = qcin − qC − kV C2, C(0) = c0

Non-dimensionalize the model by selecting the concentration scale to be cin, the input concen-
tration, and a time scale based on the flow-through rate. Determine the equilibria, or constant
solutions, and find a formula for the concentration as a function of time.

solution
Select the concentration scale cin, and time scale tc ≡ V

q
based on the flow-through rate

Non-dimensionalize the model by replacing C, t with C̄ ≡ C/cin, t̄ ≡ t/(V
q

)

cin

(V
q

)

[
dC̄

dt̄

]
= cin

q

V
− cin

q

V
C̄ − c2

in

[
kC̄2

]
, cinC̄(0) = c0

dC̄

dt̄
= 1− C̄ − kcin

V

q
C̄2 C̄(0) =

c0

cin

Define ε ≡ kcin
V
q
, α = c0

cin
, it becomes

dC̄

dt̄
= 1− C̄ − εC̄2 C̄(0) = α

Determine the equilibria Ceq = C̄eqcin by setting dC̄
dt̄

= 0

0 = 1− C̄eq − εC̄2
eq, C̄eq > 0 =⇒ C̄eq =

2

1 +
√

1 + 4ε
=

√
1 + 4ε− 1

2ε

The the equilibria Ceq is

Ceq = C̄eqcin =

√
1 + 4ε− 1

2ε
cin =

√
1 + 4kcin

V
q
− 1

2k V
q

(1)

Method 1: integrate the separable equation

If the initial value c0 = Ceq =

√
1+4kcin

V
q
−1

2k V
q

c(t) = Ceq =

√
1 + 4kcin

V
q
− 1

2k V
q

(a)

Otherwise, separate C̄, t̄, then integrate

∫
dC̄

1− C̄ − εC̄2
=

ln

∣∣∣∣ C̄+
√

1+4ε+1
2ε

C̄+−
√

1+4ε+1
2ε

∣∣∣∣
√

1 + 4ε
=

ln

∣∣∣∣ 2εC̄+1√
1+4ε

+1

2εC̄+1√
1+4ε

−1

∣∣∣∣
√

1 + 4ε
=

∫
dt̄ = t̄+ c1
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Notice that

ln

∣∣∣∣ 2εC̄+1√
1+4ε

+1

2εC̄+1√
1+4ε

−1

∣∣∣∣
√

1 + 4ε
=


2 tanh−1( 2εC̄+1√

1+4ε
)

√
1 + 4ε

2εC̄ + 1√
1 + 4ε

< 1⇔ C̄ <

√
1 + 4ε− 1

2ε
= C̄eq

2 coth−1( 2εC̄+1√
1+4ε

)
√

1 + 4ε

2εC̄ + 1√
1 + 4ε

> 1⇔ C̄ >

√
1 + 4ε− 1

2ε
= C̄eq

If the initial value c0 < Ceq =

√
1+4kcin

V
q
−1

2k V
q

, where c1 =
2 tanh−1( 2εα+1√

1+4ε
)

√
1+4ε

=
2 tanh−1(

2kc0(V/q)+1√
1+4kcin(V/q)

)
√

1+4kcin(V/q)

c(t) = C̄(t̄)cin =

√
1 + 4ε tanh

(√
1+4ε
2

(t̄+ c1)
)
− 1

2ε
cin =

√
1 + 4kcin

V
q

tanh

(√
1+4kcin

V
q

2

(
q
V
t+ c1

))
− 1

2k V
q

(b)

If the initial value c0 > Ceq =

√
1+4kcin

V
q
−1

2k V
q

, where c1 =
2 coth−1( 2εα+1√

1+4ε
)

√
1+4ε

=
2 coth−1(

2kc0(V/q)+1√
1+4kcin(V/q)

)
√

1+4kcin(V/q)

c(t) = C̄(t̄)cin =

√
1 + 4ε coth

(√
1+4ε
2

(t̄+ c1)
)
− 1

2ε
cin =

√
1 + 4kcin

V
q

coth

(√
1+4kcin

V
q

2

(
q
V
t+ c1

))
− 1

2k V
q

(c)
To sum up

c(t) =



√
1 + 4kcin

V
q
− 1

2k V
q

for c0 =

√
1 + 4kcin

V
q
− 1

2k V
q√

1 + 4kcin
V
q

tanh

(√
1+4kcin

V
q

2

(
q
V
t+

2 tanh−1(
2kc0(V/q)+1√
1+4kcin(V/q)

)
√

1+4kcin(V/q)

))
− 1

2k V
q

for c0 <

√
1 + 4kcin

V
q
− 1

2k V
q√

1 + 4kcin
V
q

coth

(√
1+4kcin

V
q

2

(
q
V
t+

2 coth−1(
2kc0(V/q)+1√
1+4kcin(V/q)

)
√

1+4kcin(V/q)

))
− 1

2k V
q

for c0 >

√
1 + 4kcin

V
q
− 1

2k V
q

(2)
Method 2: solve the Riccati equation
Riccati equations dC̄

dt̄
+ C̄ = −εC̄2 + 1

The general solution C̄(t̄) = C̄h(t̄) + C̄p(t̄), where a particular solution C̄p(t̄) = C̄eq =
√

1+4ε−1
2ε

And the solution C̄h(t̄) for a Bernoulli equation (n=2)

dC̄h
dt̄

+

[
1 + 2ε

√
1 + 4ε− 1

2ε

]
C̄h =

dC̄h
dt̄

+
√

1 + 4εC̄h = −εC̄2
h
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With substitution v ≡ C̄1−n
h = 1

C̄h
, here assume α 6= C̄eq

dv

dt̄
−
(√

1 + 4ε
)
v = ε, v(0) =

1

α− C̄eq

=
1

α−
[√

1+4ε−1
2ε

]
Multiply the integrating factor µ(t̄) = e

∫
p(t̄)dt̄ = e

∫
−
√

1+4εdt̄ = e−
√

1+4εt̄

v(t̄) =
1

µ(t̄)

∫
εµ(t̄)dt̄ = e

√
1+4εt̄ ε√

1 + 4ε
[−e−

√
1+4εt̄ ± e

√
1+4εc1 ] =

ε√
1 + 4ε

[−1± e
√

1+4ε(t̄+c1)]

Notice that v(0) = 1

α−
[√

1+4ε−1
2ε

]
1

α−
[√

1+4ε−1
2ε

] =
ε√

1 + 4ε
[−1± e

√
1+4εc1 ]

Thus (
2εα+1√

1+4ε
+ 1

2εα+1√
1+4ε
− 1

)
= ±e

√
1+4εc1

If the initial value c0 = αcin < Ceq =

√
1+4kcin

V
q
−1

2k V
q

⇔ 2εα+1√
1+4ε
− 1 < 0(

2εα+1√
1+4ε

+ 1
2εα+1√

1+4ε
− 1

)
= −e

√
1+4εc1 , c1 =

2 tanh−1( 2εα+1√
1+4ε

)
√

1 + 4ε
=

2 tanh−1( 2kc0(V/q)+1√
1+4kcin(V/q)

)√
1 + 4kcin(V/q)

C̄h(t̄) =
1

v
=

√
1 + 4ε

2ε

[
2

−1− e
√

1+4ε(t̄+c1)

]

C̄(t̄) = C̄h + C̄p =

√
1 + 4ε

2ε

[
2

−1− e
√

1+4ε(t̄+c1)

]
+

√
1 + 4ε− 1

2ε
=

√
1 + 4ε

(
e
√

1+4ε(t̄+c1)−1

e
√

1+4ε(t̄+c1)+1

)
− 1

2ε

=

√
1 + 4ε tanh

(√
1+4ε
2

(t̄+ c1)
)
− 1

2ε

If the initial value c0 = αcin > Ceq =

√
1+4kcin

V
q
−1

2k V
q

⇔ 2εα+1√
1+4ε
− 1 > 0(

2εα+1√
1+4ε

+ 1
2εα+1√

1+4ε
− 1

)
= +e

√
1+4εc1 , c1 =

2 coth−1( 2εα+1√
1+4ε

)
√

1 + 4ε
=

2 coth−1( 2kc0(V/q)+1√
1+4kcin(V/q)

)√
1 + 4kcin(V/q)

C̄h(t̄) =
1

v
=

√
1 + 4ε

2ε

[
2

−1 + e
√

1+4ε(t̄+c1)

]

C̄(t̄) = C̄h + C̄p =

√
1 + 4ε

2ε

[
2

−1 + e
√

1+4ε(t̄+c1)

]
+

√
1 + 4ε− 1

2ε
=

√
1 + 4ε

(
e
√

1+4ε(t̄+c1)+1

e
√

1+4ε(t̄+c1)−1

)
− 1

2ε

=

√
1 + 4ε coth

(√
1+4ε
2

(t̄+ c1)
)
− 1

2ε
To sum up, and substitute with C̄ ≡ C/cin, t̄ ≡ t/(V

q
), we can obtain the same expression as (2)
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Problem 7.

7. (Biogeography) The MacArthur-Wilson model of the dynamics of species (e.g., bird species)
that inhabit an island located near a mainland was developed in the 1960s. Let N be the number
of species in the source pool on the mainland, and let S = S(t) be the number of species on the
island. Assume that the rate of change of the number of species is

S ′ = χ− µ
where χ is colonization rate and µ is the extinction rate. In the MacArthur-Wilson model,

χ = I

(
1− S

N

)
and µ =

E

N
S

where I and E are the maximum colonization and extinction rates, respectively.

(a) Over a long time, what is the expected equilibrium for the number of species inhabiting
the island?

(b) Given S(0) = S0, find an analytic formula for S(t)
(c) Suppose there are two islands, one large and one small, with the larger island having the

smaller maximum extinction rate. Both have the same colonization rate. Show that the
smaller island will eventually have fewer species.

solution
Establish the equation

dS

dt
= χ− µ = I

(
1− S

N

)
− E

N
S = I − (

I + E

N
)S

(a) Determine the expected equilibrium Seq by setting dS
dt

= 0

0 = I −
(
I + E

N

)
Seq

The equilibrium Seq is

Seq =

(
I

I + E

)
N (1)

(b) Given S(0) = S0, find an analytic formula for S(t)

dS

dt
+

(
I + E

N

)
S = I, S(0) = S0

Multiply the integrating factor µ(t) = e
∫
p(t)dt = e

∫
( I+E
N

)dt = e( I+E
N

)t

d[µ(t)S]

dt
= Iµ(t)

Integrate, then divide by µ(t)

S(t) =
1

µ(t)

∫
Iµ(t)dt = e−( I+E

N
)tI

∫
e( I+E

N
)tdt = e−( I+E

N
)t

[(
I

I + E

)
Ne( I+E

N
)t + c1

]
Notice S(0) = S0

S0 =

(
I

I + E

)
N + c1 ⇒ c1 = S0 −

(
I

I + E

)
N
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In the end, S(t) is

S(t) =

(
I

I + E

)
N +

[
S0 −

(
I

I + E

)
N

]
e−( I+E

N
)t (2)

(c) Suppose there are two islands, one large and one small, with the larger island having the
smaller maximum extinction rate. Both have the same colonization rate. Show that the smaller
island will eventually have fewer species.
From (b), for any initial value, the final value S(∞) would always be

S(∞) ≡ lim
t→∞

S(t) =

(
I

I + E

)
N

Now N is the number of species on the mainland, the same maximum colonization rate I
For the large island 1, the maximum extinction rate E1, the final species S1(∞)

S1(∞) =

(
I

I + E1

)
N

For the small island 2, the maximum extinction rate E2, the final species S2(∞)

S2(∞) =

(
I

I + E2

)
N

Notice the larger island having the smaller maximum extinction rate: E1 < E2

S1(∞) =

(
I

I + E1

)
N >

(
I

I + E2

)
N = S2(∞) (3)

It shows that the smaller island 2 will eventually have fewer species S2(∞)
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Bonus.

8. (Chemical reactors) A large industrial retention pond of volume V , initially free of pollutants,
was subject to the inflow of a contaminant produced in the factory’s processing plant. Over a
period of b days the EPA found that the inflow concentration of the contaminant decreased linearly
(in time) to zero from its initial initial value of a (grams per volume), its flow rate q (volume per
day) being constant. During the b days the spillage rate to the local stream was also q. What is
the concentration in the pond after b days? Take V = 6000 cubic meters, b = 20 days, a = 0.03
grams per cubic meter, and q = 50 cubic meters per day. With these data, how long would it take
for the concentration in the pond to get below a required EPA level of 0.00001 grams per cubic
meter if fresh water is pumped into the pond at the same flow rate, with the same spill over? [Use
software to perform the calculations.]

solution
Establish equations, where cin, c are the concentration of inflow, the concentration in the pond.

V
dc

dt
= cinq − cq, c(0) = 0, cin =

{
a− a

b
t 0 ≤ t ≤ b

0 t > b

(1) For the first stage (0 ≤ t ≤ b)

dc

dt
+
q

V
c =

q

V
a(1− t

b
), c(0) = 0, (0 ≤ t ≤ b)

Multiply the integrating factor µ(t) = e
∫
p(t)dt = e

∫ q
V
dt = e

q
V
t, then integrate

c(t) =
1

µ(t)

∫ t

0

q

V
a(1− s

b
)µ(s)ds = ae−

q
V
t

∫ t

0

q

V
(1− s

b
)e

q
V
sds

=

(
e
q
V
t( q
V
b− q

V
t+ 1)− q

V
b− 1

q
V
b

)
ae−

q
V
t , 0 ≤ t ≤ b

The concentration in the pond after b days, c(b) is approximate 0.002239 (g/m3)

c(b) =

(
e
q
V
b − q

V
b− 1

q
V
b

)
ae−

q
V
b =

(
e

1
6 − 1

6
− 1

1
6

)
0.03e−

1
6 ≈ 0.002239(g/m3) (1)

(2) For the second stage (b ≤ t)

dc

dt
+
q

V
c = 0, c(b) =

(
e
q
V
b − q

V
b− 1

q
V
b

)
ae−

q
V
b, (b ≤ t)

Similarly, solve the first order linear equation

c(t) = c(b)e−
q
V

(t−b) =

(
e
q
V
b − q

V
b− 1

q
V
b

)
ae−

q
V
t , b ≤ t

Set ε = 0.00001 grams per cubic meter, c(tε) = ε

tε =

ln

(
e
q
V
b− q

V
b−1

q
V
b

)
+ ln(a

ε
)

q
V

=

ln

(
e

1
6− 1

6
−1

1
6

)
+ ln( 0.03

0.00001
)

1
120

≈ 669.335(day) (2)

It takes 670 days for the concentration to get below a required EPA level of 0.00001 (g/m3)
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Journal.

Write a list of types of differential equations that you have learned to solve in a differential equation
course. For each type of differential equations, write the name of the method that solves this type
of equations. (You do not need to describe the methods in detail, just give their names.)

solution
First order equations

(1) anti-derivatives dx
dt

= g(t)

x(t) =

∫ t

a

g(s)ds+ C

(2) separable equations dx
dt

= g(t)f(x)∫
1

f(x)
dx =

∫
g(t)dt+ C

(3) linear equations x′ + p(t)x = q(t)
Multiply the equation by the integrating factor µ(t) = e

∫
p(t)dt(

xe
∫
p(t)dt

)′
= q(t)e

∫
p(t)dt

Integrated to get

x(t) = e−
∫
p(t)dt

(∫
q(t)e

∫
p(t)dtdt+ C

)
(4) Bernoulli equations x′ + p(t)x = q(t)xn

The substitution y = x1−n, multiply (1− n)x−n

y′ + (1− n)p(t)y = (1− n)q(t)

Reduce to a linear equation for y = y(t)
(5) Riccati equations x′ + p(t)x = q(t)x2 + f(t)

The general solution x(t) = xh(t) + xp(t), where a particular solution xp(t) is known.
And the solution xh(t) for a Bernoulli equation (n=2)

x′h + [p(t)− 2q(t)xp]xh = q(t)x2
h

(6) homogeneous equations x′ = f(x
t
)

The substitution v ≡ x
t

dv

dx
v = f(v)

Reduce to a separable equation for v = v(x)
(7) exact equations f(t, x) + g(t, x)x′ = 0, and ∂f

∂x
= ∂g

∂t

Then a potential function H(x, t) exists, and H(t, x) = c

∂H

∂t
= f(x, t),

∂H

∂x
= g(x, t)

In the end, it gives

H(t, x) =

∫ t

t0

f(t′, x0)dt′ +

∫ x

x0

g(t, x′)dx

=

∫ t

t0

f(t′, x0)dt′ +

∫ x

x0

[
g(t0, x

′) +

∫ t

t0

∂f(t′, x′)

∂x′
dt′
]
dx′ = c
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Second order equations

(1) linear equations
• homogeneous equation, constant coefficients x′′ + a1x

′ + a0x = 0
The characteristic equation, roots are r1, r2

r2 + a1r + a0 = 0

If r1 = r2, the general solution x(t) = (c1 + c2t)e
r1t

Otherwise, the general solution x(t) = c1e
r1t + c2e

r2t

• homogeneous equation x′′ + a1(t)x′ + a0(t)x = 0, solution x1(t) known

Wronskian W (t) = W (t0)e
−

∫ t
t0
a1(τ)dτ

, we can set W (t0) to be an any real number
In the other way ∣∣∣∣x1 x2

x′1 x′2

∣∣∣∣ = x1x
′
2 − x′1x2 = W (t)

Reduce to a first order linear equation, where p(t) = −x′1
x1
, q(t) = W (t)

x1
= W (t0)

x1
e
−

∫ t
t0
a1(τ)dτ

x′2 + p(t)x2 = q(t)

With the substitution v(t) ≡ x2(t)
x1

, then integrate

v(t) =

∫
dv

dt
dt =

∫
W (t0)

x2
1

e
−

∫ t
t0
a1(τ)dτ

dt

• non-homogeneous equation x′′ + a1(t)x′ + a0(t)x = f(t)
If we know the linear independent solutions x1(t), x2(t) for x′′ + a1(t)x′ + a0(t) = 0
The general solution x(t) = xh(t) + xp(x), where xh(t) = c1x1(t) + c2x2(t)
variation of parameters: the particular solution xp(t) = c1(t)x1(t) + c2(t)x2(t) sat-
isfies (

x1 x2

x′1 x′2

)(
c′1(t)
c′2(t)

)
=

(
0
f(t)

)
Thus, use Cramer’s rule and integrate, where W (t) ≡ | x1 x2

x′1 x
′
2
| = W (t0)e

−
∫ t
t0
a1(τ)dτ(

c1(t)
c2(t)

)
=

(
−
∫ f(t)u2(t)

W (t)
dt∫ f(t)u1(t)

W (t)
dt

)
• non-homogeneous, special function f(t), constant coefficients x′′ + a1x

′ + a0x = f(t)
undetermined coefficients:
f(t) are α, eβt, sin(ωt), cos(ωt), tn, and sums, products of these common functions
Form of source function f(t) Trial form of particular solution xp(t)
α A
αeβt Aeβt

Polynomial of degree n Ant
n + An−1t

n−1 + · · ·+ A1t+ A0

α sinωt;α cosωt A sinωt+B cosωt
αert sinωt; αert cosωt ert(A sinωt+B cosωt)

(2) Cauchy-Euler equation t2x′′ + b1tx
′ + b0x = 0

The substitution p = ln(t), it leads to

dx = x′dt = x′ dt
dp
dp = x′tdp

d2x = x′′dt2 = d(dx) = d (x′tdp) = d (x′t) dp =
([
x′′ dt

dp
dp
]
t+ x′ dt

dp
dp
)
dp = [x′′t2 + x′t] dp2
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Thus

dx

dp
= tx′,

d2x

dp2
− dx

dp
= t2x′′

Reduce to the homogeneous, constant coefficient equation

d2x

dp2
+ (b1 − 1)

dx

dp
+ b0x = 0

The indicial equation

r(r − 1) + b1r + b0 = r2 + (b1 − 1)r + b0 = 0

(3) nonlinear equation
• special form x′′ = f(t, x′)

The substitution v ≡ x′, it becomes first order equation

dv

dt
= f(t, v)

• special form x′′ = f(x, x′)
The substitution v ≡ x′, it leads to

x′′ =
dx′

dt
=
dv

dx

dx

dt
=
dv

dx
v

Reduce to the first order equation

v
dv

dx
= f(x, v)

Higher order equations

(1) linear equations
• homogeneous equation, constant coefficients x(n) + an−1x

(n−1) + · · ·+ a0x = 0
The characteristic equation

rn + an−1r
n−1 + · · ·+ a0 = 0

It hasm roots r1, r2, · · · , rm, the multiplicity of which, respectively, is equal to k1, k2, · · · , km

x(t) =
(
c1 + c2t+ · · ·+ ck1t

k1−1
)
er1t + · · ·

+
(
cn−km+1 + cn−km+2t+ · · ·+ cnt

km−1
)
ermt

• non-homogeneous equation x(n) + an−1(t)x(n−1) + · · ·+ a0(t)x = f(t)
Linear independent x1(t), · · · , xn(t) known for x(n) + an−1(t)x(n−1) + · · ·+ a0(t)x = 0
The general solution x(t) = xh(t) + xp(x), where xh(t) =

∑n
i=1 cixi(t)

variation of parameters: the particular solution xp(t) =
∑n

i=1 ci(t)xi(t) satisfies
x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)

...
...

. . .
...

x
(n−1)
1 (t) x

(n−1)
2 (t) · · · x

(n−1)
n (t)



c′1(t)
c′2(t)

...
c′n(t)

 =


0
0
...

f(t)
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Thus, use Cramer’s rule and integrate, where Wronskian W (t) = W (t0)e
−

∫ t
t0
an−1(τ)dτ

,
and Wi(t) is the Wronskian determinant with the i-th column replaced by [ 0 0 ··· f(t) ]T

c1(t)
c2(t)

...
cn(t)

 =

∫ 
W1(t)
W (t)
W2(t)
W (t)

...
Wn(t)
W (t)

 dt

• non-homogeneous, special f(t), constant coefficients x(n) +an−1x
(n−1) + · · ·+a0x = f(t)

undetermined coefficients:
f(t) are α, eβt, sin(ωt), cos(ωt), tn, and sums, products of these common functions
Form of source function f(t) Trial form of particular solution xp(t)
α A
αeβt Aeβt

Polynomial of degree n Ant
n + An−1t

n−1 + · · ·+ A1t+ A0

α sinωt;α cosωt A sinωt+B cosωt
αert sinωt; αert cosωt ert(A sinωt+B cosωt)


