Assigned 11/18/21

- Email a pdf of your derivations, plots, and code to Prof Gelfand
- Due 12/10/21 (or earlier)
- 1. Let X_1, X_2, \ldots , be independent uniform random variables on (0, 1). Let

$$S_n = \sum_{i=1}^n X_i$$

and

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

where $E[X_n] = \mu$ and $Var[X_n] = \sigma^2$.

- (a) Find μ and σ^2 .
- (b) Show that $E[Z_n] = 0$ and $Var[Z_n] = 1$.
- (c) Find and plot $f_{Z_3}(z)$.
- 2. For n > 3 $f_{Z_n}(z)$ can be approximated analytically or numerically.

An analytical approximation for $f_{Z_n}(z)$ can be based on the Central Limit Theorem, i.e., a Gaussian pdf with mean 0 and variance 1 can be used to estimate the pdf of Z_n .

A numerical approximation for $f_{Z_n}(z)$ can be based on a simulation. Generate $n \times K$ realizations of a uniform random variable on (0, 1), and denote them by

 $\{x_{i,k} : i = 1, ..., n; k = 1, ..., K\}$. $\{x_{i,k} : k = 1, ..., K\}$ are K realizations of X_i . Let

$$s_{n,k} = \sum_{i=1}^{n} x_{i,k}, \ z_{n,k} = \frac{s_{n,k} - n\mu}{\sigma\sqrt{n}}$$

 $\{z_{n,k}: k = 1, \ldots, K\}$ are K realizations of Z_n . A normalized histogram for Z_n based on these realizations can be used to estimate the pdf of Z_n .

For n = 3 plot and compare the analytical and numerical approximations with the exact plot in part 1. For n = 30 plot and compare the analytical and numerical approximations with each other. In the simulations, choose $K = 10^6$ and a bin size of 100.

3. To see how the approximations might be used, consider the following problem. Suppose n messages arrive at a node where the message lengths are independent uniform random variables between 0 and 1 MB (this is an approximations as bits are of course discrete). These messages are to be stored on a hard drive or transmitted over a network. For n = 3 find the probability that the total message length exceeds 2 MB using the analytical and numerical approximations in part 2, and also the exact probability using part 1. For n = 30 find the probability that the total message length exceeds 20 MB using the analytical and numerical approximations in part 2.