Hence

ln(p(X,Z|θ))=n=1Nanlnp(xn|zn,Σ,μ)+n=1Nanlnp(zn|π)=n=1Nank=1K(lnπk)zkn+n=1Nank=1K(lnϕk(xn))zkn=lnπTZa+n=1Nank=1K[l2ln(2π)12ln|Σk|12(xnμk)TΣk1(xnμk)]zkn=(lnπT12|Σ|T)Zal2ln(2π)ones(1,K)Za12k=1K[tr((Xμk1T)TΣk1(Xμk1T)diag(azk))]

 

Now find close form of Q

Zp(Z|X,θ old ) is [probability distribution] random variable of Z [probability distribution] random variable

Here qk=p(Z|X,θk)=p(Z|X,θ old )

Q(θ,θ old )Zp(Z|X,θ old )lnp(X,Z|θ)={[n=1Nanznp(zn|xn,θ old )znT](lnπ12|Σ|l2ln(2π)1.)}12{n=1Nank=1K[znp(zn|xn,θ old )(xnμk)TΣk1(xnμk)zkn]}=[γa]T(lnπ12|Σ|l2ln(2π)1.)12k=1Ktr(diag(aγk)(Xμk1T)TΣk1(Xμk1T))

Here

p(zn|xn,θold)=p(xn|zn,θold)p(zn|θold)znp(xn|zn,θold)p(zn|θold)

So, have 1.Tγ=ones(1,N)

p(zn=k|xn,θold)=ϕkold(xn)πkoldk=1Kϕkold(xn)πkoldγknγ=ϕold(X)(πkold1.T)(1.1.(πold)Tϕold(X))

maximize Q

 

To sum up

π=[γa]1.T[γa]=[γa]1.Taμk=X(aγk)1.T(aγk)Σk=(Xμk1T)diag(aγk)(Xμk1T)T1.T(aγk)

where, have 1.Tγ=ones(1,N)

p(zn=k|xn,θold)=ϕkold(xn)πkoldk=1Kϕkold(xn)πkoldγknγ=ϕold(X)(πkold1.T)(1.1.(πold)Tϕold(X))

here γk is (N x 1) matrix

γ=[γkT]

 

Actually, Hinton calculate the π

πk=sigmoid(λ(βa(βu+ln|Σk|)(aTγk)))