
Image Generation using Wasserstein Generative
Adversarial Network

Zhankun Luo
Dept. of ECE

Purdue University Northwest
Hammond, IN, USA

luo333@pnw.edu

Andres Jara
Dept. of ECE

Purdue University Northwest
Hammond, IN, USA

ajaralom@pnw.edu

Wen Ou
Dept. of ECE

Purdue University Northwest
Hammond, IN, USA

ou21@pnw.edu

Abstract—GAN shows the capability to generate fake authentic
images by evaluating and learning from real and fake samples.
This paper introduces an alternative algorithm to the traditional
DCGAN, named Wasserstein GAN (WGAN). It introduces the
Wasserstein distance for the first time, and the improved model
WGAN-GP added the gradient penalty in the loss function. The
experimental results demonstrate an improvement in the learning
stability comparing to DCGAN whereas WGAN-GP convergence
speed outcompetes WGAN.

Index Terms—GAN, Wasserstein Distance, Gradient Penalty

I. INTRODUCTION

Generative adversarial network was firstly introduced in
2014 by Goodfellow et al. [1]. The model consists of one
pair of neural networks, generator G and discriminator D,
both trying to learn from each other simultaneously. While
the generator is trained to produce fake samples as similar
as possible to the real data, the discriminator is trained to be
able to classify fake samples from real samples. Nevertheless,
there are difficulties in the training that make the model fail.
G tends to stuck when the same output is being produced with
extremely low variety. The lack of a proper evaluation metric
results in possible convergence failure. Such difficulties are
improved with an alternative model named Wasserstein GAN
(WGAN).

WGAN was proposed in 2017 by Arjovsky et al. [2]. This
algorithm enhances one important aspect of GAN: training
stability. WGAN uses a critic model that scores the “realness”
or “fakeness” instead of a discriminator model (DCGAN)
that predicts the probability of a sample as “real” or “fake”.
This conceptual shift comes from the motivation of using
the Wasserstein distance (Earth-mover distance). It helps to
overcome the gradient vanishing problem, thus strengthens
the stability of the GAN model. Hence, the improved model
WGAN-GP is introduced [3] where the gradient penalty is
added to accelerate the convergence speed.

In this paper, an overview of the Wasserstein GAN model is
discussed to provide a comprehensive analysis of Wasserstein
distance in comparison to other probability distances and
divergences. Afterwards, the WGAN algorithm is demon-
strated along with the improved WGAN-GP algorithm. The
experimental results are compared making use of WGAN and
WGAN-GP on MNIST dataset and CIFAR-10 dataset.

II. PROBLEM DESCRIPTION

There are a real image x and a fake image G(z) generated
by neural network G whose input is random noise z. The
real image x and fake image G(z) can be rearranged to be a
vector. It is assumed that if the x and G(z) are close enough,
people will not able to identify the differences between the real
image x and the generated fake image G(z). Here the neural
network is used D as the discriminator metric to separate real
images x from fake images G(z), that is, D(x) and D(G(z))
respectively.

A. DCGAN

The discriminator is expected to identify between the real
image x and the fake image G(z), that is D(x) ≈ 1 and
D(G(z)) ≈ 0 for the real image x and the fake image G(z),
and the range of D(·) ∈ (0, 1). If the cross entropy (1) is used
to measure the similarity between the predicted value given
by D and the true values, then it results in the following:

H(y, p) =
∑
−y log(p)− (1− y) log(1− p) (1)

Here, if x is a real image, the label is y = 1, and the predicted
probability of real image for x is p = D(x). The cross entropy
becomes:

H(y, p) =
∑
− log(D(x)) (2)

G(z) is a fake image, the label is y = 0, and the predicted
probability of fake image for DG(z) is 1−p = 1−D(G(z)),
the cross entropy results in:

H(y, p) =
∑
− log(1−D(G(z))) (3)

Equation (4) is the sum of (2) and (3), x(i) and G(z(i)) denote
the i-th real image and the i-th fake image in batch size m
samples respectively.

lossD =
1

m

m∑
i=1

− log(D(x(i)))− log(1−D(G(z(i)))) (4)

lossD is known as the loos function and reaches the minimal
point when D(xi) = 1 and D(G(zi)) = 0. If the generator
G is fixed, WGAN is used to update the parameters of the
discriminator, θd. Typically, the gradient-based optimization
method is applied to minimize lossD.

Since the discriminator cannot separate real x from fake
images G(z) by itself, that is D(G(z)) ≈ 1, the goal is to
maximize D(G(z)) to be equivalent to minimizing (5) or (6)

lossG =
1

m

m∑
i

− log(D(G(z(i)))) (5)

lossG =
1

m

m∑
i

log(1−D(G(z(i)))) (6)

where G(z(i)) denotes the i-th fake image in batch size
m samples and lossG reaches the minimal point when
D(G(z(i))) = 1. If the discriminator D is fixed, the algorithm
can be used to update the parameters of generator θg . Once
again, the gradient-based optimization method is used to
minimize the loss function of the generator lossG.

Fig. 1. DCGAN Training Process.

B. Problem of DCGAN

The expectation of the discriminator loss E [lossD] is min-
imized by the following equation (7):

E [lossD] =
∫

[−p(x) log(D(x))− q(x) log(1−D(x))] dx

(7)
where p(x) is the distribution of the real data x and q(x′) is
the estimated distribution of the fake data x′ = G(z) from
the generator. Notice that p(x), q(x) are fixed values when
the generator G is fixed. By setting the functional J (D) ≡
E [lossD], the variation of J (D) becomes:

δJ (D) =

∫ [
− p(x)

D(x)
+

q(x)

1−D(x)

]
δDdx = 0 (8)[

− p(x)

D(x)
+

q(x)

1−D(x)

]
= 0⇒ D(x) =

p(x)

p(x) + q(x)
(9)

From equation (9), E [log(D(x))] is a constant value. The
E [lossG] (6) is minimized. The sum of the expectation of the
discriminator loss and E [log(D(x))] is derived as follows:

E [lossG] + E [log(D(x))]

=

∫
p(x) log(D(x))dx+

∫
q(x′) log(1−D(x′))dx′

=

∫ [
p log

(
p

1
2 [p+ q]

)
+ q log

(
q

1
2 [p+ q]

)]
dx− 2 log(2)

=2DJS(p||q)− 2 log(2)
(10)

When there is a huge gap increasing between p and q, the
Jensen-Shannon divergence is DJS(p||q) = log(2) presented

Fig. 2. Probability distribution of p and q.

in Fig. 3. Consequently, the gradient for DJS(p||q) will vanish,
that is, the generator G learns nothing from the gradient-based
optimization. (Fig.1-Fig.3 come from Jonathan Hui’s blog [4])

Fig. 3. The JS divergence for different q.

III. ALGORITHM OF WASSERSTEIN GAN

A. Wasserstein Distance

To solve the problem that G may learn nothing when D
is well-trained, Arjovsky introduced the Wasserstein distance,
whose gradient does not vanish when the distribution of real
image Pr(x) and the distribution of the fake image Pg(y) are
far away from each other. Arjovsky proved that Wasserstain

distance could be written as: [2].

W (Pr, Pg) = inf
γ∼Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]

=
1

K
sup

‖f‖L≤K
Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

≈ 1

K
max

w:|fw|L<K
Ex∼Pr

[fw(x)]− Ex∼Pg
[fw(x)]

(11)
where γ is the joint distribution of Pr, Pg , that is,∫
γ(x, y)dy = Pr(x),

∫
γ(x, y)dx = Pg(y) holds for the joint

probability distribution function γ(x, y). ‖f‖L ≤ K means all
the functions satisfy the Lipschitz constraint

|f (x1)− f (x2)| ≤ K |x1 − x2| (12)

In simple and informal words, the Wasserstein distance (also
known as Earth Mover’s distance) can be interpreted as finding
the shortest path of transporting the distribution Pr(x) to the
distribution Pg(y).

A subset of f that satisfies the Lipschitz constraint is chosen
to find the maximal value and finally estimate the Wasserstein
distance. Typically, neural networks are used to represent a
family of functions fw, where w represents the weights of
neural networks.

|w| < c, |x| < M ⇒
∣∣∣∣∂fw∂x

∣∣∣∣ = |g(w, x)| < K

⇒ |f (x1)− f (x2)| ≤ K |x1 − x2|
(13)

The exact value of K is not used. However, it ensures
that fw satisfies the Lipschitz constraint. Then, the best w∗

is obtained to reach the Wasserstein distance KW (Pr, Pg) =
KW (p(x), q(x′)) between the distributions p(x) and q(x′).

w∗ = argmax
|w|<c

Ex∼Pr
[fw(x)]− Ex∼Pg

[fw(x)]

≈ argmin
|w|<c

1

m

m∑
i=1

−fw(x(i)) + fw(x
′(i))

(14)

The estimation formula of the Wasserstein distance used for
fixed w∗ and fw∗(x)

Ex∼Pr
[fw∗(x)]− Ex∼Pg

[fw∗(x)]

≈ 1

m

m∑
i=1

fw∗(x
(i))− fw∗(x′(i))

(15)

B. Wasserstein GAN

The discriminator D expects to maximize the “distance”
between the real image x and the fake image x′ = g(z)
when the generator G is fixed, that is, θ, gθ. From (11),
we know the Wasserstein distance is the super limit of
Ex∼p(x)[f(x)] − Ex′∼q(x′)[f(x′)]. Thus, the loss function of
D for minimization is determined.

lossD =
1

m

m∑
i=1

−fw(x(i)) + fw(gθ(z
(i))) (|w| < c)

≈ −
(
Ex∼p(x)[fw(x)]− Ex′∼q(x′)[fw(x′)]

) (16)

w ← −∇wlossD = ∇w
1

m

m∑
i=1

fw(x
(i))− fw(gθ(z(i)))

w ← clip(w,−c, c)
(17)

The generator G expects to minimize the distance between
the distribution of real image x and the distribution of fake
image x′ when the discriminator D is fixed, that is, w, fw are
fixed. From (15), the Wasserstein distance can be estimated
by KW (p(x), q(x′)) ≈ 1

m

∑m
i=1 fw(x

(i)) − fw(x′(i)), where
fw(x

(i)) is a constant value when w, fw are fixed. Thus, the
loss function of G for minimization is found to be:

lossG = − 1

m

m∑
i=1

fw(gθ(z
(i))) (18)

θ ← −∇θlossG = ∇θ
1

m

m∑
i=1

fw(gθ(z
(i))) (19)

Fig. 4. WGAN training process.

C. Wasserstein GAN with Gradient Penalty

This model of WGAN is very sensitive to the hyper param-
eter c that ensures fw satisfies the Lipschitz condition. When c
is big, the convergence speed can be very slow, but when c is
small, the gradient of w may vanish if the batch normalization
is not used or the number of layers is huge.

Fig. 5. Gradient norm of 0.8lossD with values of c and numbers of layers,
and weight distribution for WGAN and WGAN-GP.

Fig. 5 [3] demonstrates the weakness of WGAN with weight
clipping. If the batch normalization is removed, the gradient of
lossD can be converted from vanishing gradients to exploding
ones with small changes of c. Since the weights w of fw

concentrate within [−c, c], WGAN cannot make full use of
the fitting capabilities of deep neural networks.

Lemma 1: A differentiable function f is 1-Lipschitz ⇔ f
has gradients norm 1 at most everywhere.
From lemma 1, if

∣∣∣∣∣∣∂fw∂x ∣∣∣∣∣∣
2

can be close to 1, the model can
satisfy Lipschitz condition as well. By creating x̂ = εx+(1−
ε)x′, ε ∼ U [0, 1] to represent both real and fake images and
added to the L2 gradient penalty, the loss function D of is
obtained as:

lossD =
1

m

m∑
i=1

fw(gθ(z
(i)))−fw(x(i))+λ

(∣∣∣∣∣∣∣∣∂fw(x̂)∂x̂

∣∣∣∣∣∣∣∣
2

− 1

)2

(20)

Algorithm 1 WGAN with gradient penalty. We use default
values of λ = 10, ncritic = 5, α = 0.0001, β1 = 0, β2 = 0.9
Require: The gradient penalty coefficient λ, the number of

critic iterations per generator iteration ncritic, the batch
size m, Adam hyperparameters α, β1, β2.

Require: initial critic parameters w0, generator parameters θ0.
1: while θ has not converge do
2: for t = 1, · · · , ncritic do
3: for i = 1, · · · ,m do
4: Sample real data x ∼ Pr, latent variable z ∼ p(z),

a random number ε ∼ U [0, 1].
5: x′ ← gθ(z)
6: x̂ = εx+ (1− ε)x′

7: L(i) ← −fw(x) + fw(x
′) + λ

(∣∣∣∣∣∣∂fw(x̂)
∂x̂

∣∣∣∣∣∣
2
− 1
)2

8: end for
9: w ← Adam

(
∇w 1

m

∑m
i=1 L

(i), w, α, β1, β2

)
10: end for
11: Sample a batch of latent variables

{
z(i)
}m
i=1
∼ p(z).

12: θ ← Adam
(
∇θ 1

m

∑m
i=1−fw (gθ(z)) , θ, α, β1, β2

)
13: end while

IV. EXPERIMENTAL RESULTS

The methods WGAN and WGAN-GP are applied to the
MNIST handwritten digits data set that are trained for 200
epochs. The hyper parameter of weight clipping c = 0.01 to
be used in WGAN. In terms of step size and optimizer, WGAN
used α = 0.00005 and RMSprop optimizer while Wasserstein
GAN gradient penalty (WGAN-GP) used α = 0.0002 and
Adams optimizer (β1=0.5 and β2=0.999).

Fig. 6 presents the fake handwritten digits generated by
WGAN, while Fig. 7 shows the digits generated by WGAN-
GP. The results obtained by WGAN-GP show better perfor-
mance than WGAN after training the MNIST data for the same
amount of epochs.

V. CONCLUSION

GAN was firstly introduced to provide a general idea of
Wasserstein generative adversarial network (WGAN) and its
improvement using gradient penalty (WGAN-GP). The gradi-
ent of the discriminator (GAN) was converted from vanishing
to exploding gradients and small changes were noticed in the

Fig. 6. Fake images generated by WGAN after training for 200 epochs.

Fig. 7. Fake images generated by WGAN-GP after training for 200 epochs.

weight clipping using the hyper parameter c. The gradient
penalty creates a gradient norm of 1 so that it makes complete
use of the fitting capabilities of deep neural networks. The
experimental results demonstrated that WGAN improves the
learning stability, one of the problems of DCGAN; whereas
WGAN-GP convergence speed is faster and perform better
results than WGAN.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, pp. 2672–2680, 2014.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in neural informa-
tion processing systems, pp. 5767–5777, 2017.

[4] J. Hui, “Gan - wasserstein gan & wgan-gp.” , Medium,
2018. [Online]. Available: https://jonathan-hui.medium.com/
gan-wasserstein-gan-wgan-gp-6a1a2aa1b490. [Accessed: Nov-16-
2020].

