Quasi-Newton method

[Quasi-Newton](#page-0-0) method review of [Newton](#page-0-1) method assumption of [Quasi-Newton](#page-0-2) type 1: DFP [method](#page-1-0) type2: BFGS [method](#page-2-0)

link of references:

- 1. 牛顿法和拟牛顿法 basic assumption of Quasi-Newton
- 2. 牛顿法和拟牛顿法 types of Quasi-Newton method
- 3. BFGS[算法的迭代公式推导](https://zhuanlan.zhihu.com/p/91230555) derive BFGS with Sherman-Morrison formula
- 4. [Sherman–Morrison](https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula) formula
- 5. 拟牛顿法: SR1, BFGS, DFP, DM条件 math explanation of Quasi-Newton methods

review of Newton method

$$
\nabla f\left(x_{k+1}\right) \approx \nabla f\left(x_{k}\right) + H\left(x_{k}\right)\left(x_{k+1} - x_{k}\right)
$$

 $f(x)$ is local minimal at $x=x_{k+1}$ when

1. $H(x_k)$ is positive definite 2. $\nabla f(x_{k+1}) = 0$

Thus

$$
0=\nabla f\left(x_{k}\right)+H\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)\Longrightarrow x_{k+1}=x_{k}-H^{-1}\left(x_{k}\right)\nabla f\left(x_{k}\right)
$$

assumption of Quasi-Newton

 H^{-1} is complicated to compute, we find other form G to replace it

define $\delta_k \equiv x_{k+1} - x_k$, and $y_k \equiv g_{k+1} - g_k \equiv \nabla f(x_{k+1}) - \nabla f(x_k)$

It still holds

$$
\nabla f\left(x_{k+1}\right) \approx \nabla f\left(x_{k}\right) + H\left(x_{k}\right)\left(x_{k+1} - x_{k}\right)
$$

A. thus, replace $H^{-1}(x_k)$ with G_{k+1} to derive the constraint

$$
\delta_k \approx G_{k+1} y_k
$$

B. modify the Newton method, here G_k is corresponding to the $H^{-1}(x_{k-1})$, then replace $H^{-1}(x_k)$ with $\lambda_k H^{-1}(x_{k-1}) \approx \lambda_k G_k$

$$
x_{k+1} = x_k - \lambda_k G_k g_k
$$

moreover, the λ_k is given by

$$
\lambda_k \equiv \mathop{\rm argmin}_{\lambda_k} f(x_k-\lambda_k G_k g_k), \quad st. \, \lambda_k \geq 0 \Longrightarrow \frac{df}{d\lambda_k} = (G_k g_k)^T g_{k+1} = g_k^T G_k g_{k+1} = 0
$$

recall that:

- 1. we only care about the direction of x changes δ_k , that is $-G_k g_k$
- 2. we have to make sure G_k is always positive definite
- 3. we have to make sure G_{k+1} satisfies $\delta_k \approx G_{k+1}y_k$

type 1: DFP method

Use G_{k+1} to estimate $H^{-1}(x_k)$

- 1. G_k is positive definite
- 2. satisfy $\delta_k = G_{k+1} y_k$

Derive the formula of G_{k+1}

a. set up $G_{k+1} = G_k + uu^T - vv^T$

$$
\delta_k = G_{k+1}y_k = G_ky_k + u(u^Ty_k) + v(v^Ty_k)
$$

now we could set

$$
\delta_k = u(u^Ty_k) \\ -G_kg_k = -v(v^Ty_k)
$$

Thus we have $u = k_1 \delta_k, v = k_2 G_k y_k$, solve for k_1, k_2 by comparing coefficients

$$
\begin{aligned}1&=k_1^2(\delta_k^Ty_k)\\1&=k_2^2(y_k^TG_ky_k)\end{aligned}
$$

In the end

$$
G_{k+1}=G_k+k_1^2\delta_k\delta_k^T-k_2^2G_ky_ky_k^TG_k^T=G_k+\frac{1}{\delta_k^Ty_k}\delta_k\delta_k^T-\frac{1}{y_k^TG_ky_k}G_ky_ky_k^TG_k^T
$$

notice B. $\delta_k=-\lambda_kG_kg_k, g_k^TG_kg_{k+1}=0,$ so that if we want to ensure $G_k\Rightarrow G_{k+1}$ positive definite, have to make sure

$$
\delta_k^Ty_k=-\lambda_kg_k^TG_k^T(g_{k+1}-g_k)=+\lambda_kg_k^TG_kg_k>0
$$

It can be proved if $G_0 = I$ is positive definite, then G_k is positive definite,

For any X , first part

$$
\frac{1}{\delta_k^Ty_k}X^T\delta_k\delta_k^T X=\frac{1}{\delta_k^Ty_k}(\delta_k^TX)^2\geq 0
$$

For any X , the second part

$$
X^T\left[G_k - \frac{1}{y_k^TG_ky_k}G_ky_ky_k^TG_k^T\right]X = \frac{1}{y_k^TG_ky_k}\left[(X^TG_kX)(y_k^TG_ky_k) - (X^TG_ky_k)^2\right] = \frac{1}{y_k^TG_ky_k}\left[(X'^T\Lambda_kX')(y_k'^T\Lambda_ky_k') - (X'^T\Lambda_ky_k')^2\right]
$$

here the diagonal matrix $\Lambda_k = diag(\lambda_{k1}, \cdots, \lambda_{kN})$ shape (N, N), because G_k positive definite, we have all $\lambda_{kn}\geq 0$

$$
= \frac{1}{y_k^T G_k y_k} \left[\sum_{n=1}^N (\lambda_{kn} x_n'^2) \sum_{n=1}^N (\lambda_{kn} y_{kn}'^2) - \sum_{n=1}^N (\lambda_{kn} x_n' y_{kn}')^2 \right] = \frac{1}{y_k^T G_k y_k} \sum_{n=1}^N \sum_{n'=1}^N \lambda_{kn} \lambda_{kn'} (x_n' x_{n'}' - y_{kn}' y_{kn'}')^2 \geq 0
$$

To sum up, G_{k+1} is positive definite when G_k is positive definite

type2: BFGS method

That is better than DFP

step 1. Use B_{k+1} to estimate $H(x_k)$

1. B_k is positive definite 2. satisfy $y_k = B_{k+1} \delta_k$

step 2. Use $G_{k+1} = B_{k+1}^{-1}$ to get $H^{-1}(x_k)$

Derive the formula of G_{k+1}

For step 1. similarly from $y_k = B_{k+1} \delta_k$

set $B_{k+1} = B_k + uu^T - vv^T$

$$
B_{k+1}=B_k+k_1^2y_ky_k^T-k_2^2B_k\delta_k\delta_k^TB_k^T=B_k+\frac{1}{y_k^T\delta_k}y_ky_k^T-\frac{1}{\delta_k^TB_k\delta_k}B_k\delta_k\delta_k^TB_k^T
$$

notice B. $\delta_k = -\lambda_k G_k g_k$, $g_k^T G_k g_{k+1} = 0$, so we have $g_k = -\frac{1}{\lambda_k} B_k \delta_k$, $\delta_k^T B_k \delta_{k+1} = 0$, similarly when $B_0 = I$ is positive definite, we can prove B_k is positive definite too, thus $G_k=B_k^{-1}$ is positive definite

For step 2. with the [Sherman–Morrison](https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula) formula

$$
\left(A + \frac{uv^{T}}{t}\right)^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{t + v^{T}A^{-1}u}
$$

Apply it for two times, notice $B^T = B$

$$
G_{k+1} \equiv B_{k+1}^{-1} = \left(B_k + \frac{y_ky_k^T}{y_k^T\delta_k} - \frac{B_k\delta_k\delta_k^TB_k^T}{\delta_k^TB_k\delta_k}\right)^{-1}
$$

1st time

$$
= \left(B_k+\frac{y_ky_k^T}{y_k^T\delta_k}\right)^{-1}+\left(B_k+\frac{y_ky_k^T}{y_k^T\delta_k}\right)^{-1}\frac{B_k\delta_k\delta_k^TB_k}{\delta_k^TB_k\delta_k-\delta_k^TB_k\left(B_k+\frac{y_ky_k^T}{y_k^T\delta_k}\right)^{-1}B_k\delta_k}\left(B_k+\frac{y_ky_k^T}{y_k^T\delta_k}\right)^{-1}
$$

2nd time

$$
\begin{split} &=\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)+\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)\frac{B_{k}\delta_{k}\delta_{k}^{T}B_{k}}{\delta_{i}^{T}B_{k}\delta_{k}-\delta_{k}^{T}B_{k}\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)}\\ &=\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)+\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)\frac{B_{k}\delta_{k}\delta_{k}^{T}B_{k}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}y_{k}}}\right)}\\ &=\left(B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{y_{k}^{T}\delta_{k}+y_{k}^{T}B_{k}^{-1}y_{k}}\right)+\frac{B_{k}^{-1}B_{k}\delta_{k}\delta_{k}^{T}B_{k}B_{k}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}y_{k}}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}y_{k}}}\frac{B_{k}^{-1}y_{k}y_{k}^{T}B_{k}^{-1}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}y_{k}}}{\frac{\delta_{k}^{T}y_{k}y_{k}^{T}B_{k}^{-1}y_{k}}}\
$$

then

$$
=B_{k}^{-1}+\frac{\delta_{k}\delta_{k}^{T}\left(y_{k}^{T}\delta_{k}\right)}{\left(\delta_{k}^{T}y_{k}\right)^{2}}+\frac{\delta_{k}\delta_{k}^{T}\left(y_{k}^{T}B_{k}^{-1}y_{k}\right)}{\left(\delta_{k}^{T}y_{k}\right)^{2}}-\frac{\delta_{k}y_{k}^{T}B_{k}^{-1}}{\delta_{k}^{T}y_{k}}-\frac{B_{k}^{-1}y_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\\=B_{k}^{-1}-\frac{B_{k}^{-1}y_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}-\frac{\delta_{k}y_{k}^{T}B_{k}^{-1}}{\delta_{k}^{T}y_{k}}+\frac{\delta_{k}\left(y_{k}^{T}B_{k}^{-1}y_{k}\right)\delta_{k}^{T}}{\left(\delta_{k}^{T}y_{k}\right)^{2}}+\frac{\delta_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\\=B_{k}^{-1}\left(I-\frac{y_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)-\frac{\delta_{k}y_{k}^{T}B_{k}^{-1}}{\delta_{k}^{T}y_{k}}\left(I-\frac{y_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)+\frac{\delta_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\\=\left(I-\frac{\delta_{k}y_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)B_{k}^{-1}\left(I-\frac{y_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)+\frac{\delta_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}\\=\left(I-\frac{\delta_{k}y_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)B_{k}^{-1}\left(I-\frac{\delta_{k}y_{k}^{T}}{\delta_{k}^{T}y_{k}}\right)^{T}+\frac{\delta_{k}\delta_{k}^{T}}{\delta_{k}^{T}y_{k}}
$$

Eventually

$$
G_{k+1} = \left(I - \frac{\delta_k y_k^T}{\delta_k^T y_k}\right)G_k\left(I - \frac{\delta_k y_k^T}{\delta_k^T y_k}\right)^T + \frac{\delta_k \delta_k^T}{\delta_k^T y_k}
$$

That is the iterative formula for \mathcal{G}_k

1. if $\bar{G}_0 = I$ is positive definite, then \bar{G}_k is positive definite

2. satisfy $\delta_k = G_{k+1} y_k$