ECE 64100 Homework 3-Due Sep. 24, 2021 Zhankun Luo (ECE Ph.D. student)
Chapter 3 (Causal Gaussian Models), problems 1 to 10 luo333@purdue.edu

PROBLEM 1

1. Let {X,})_, be a 1-D Gaussian random process such that

n—1
gn = Xn - Z hn—iXi
1=n—P
results in &, being a sequence of i.i.d. N(0,0?) random variables for n = 1,--- , N, and assume

that X,, = 0 for n < 0. Compute the ML estimates for the prediction filter h,, and the prediction
variance o2

solution

Step 1: As proved in Chapter 2 Problem 14, 15:

for X, Y with p, =0,u, =0, if X € R™ and ¥ € R" are jointly Gaussian random vectors
Denote covariance by R, = E[XX*], R,, = E[XY'], R, = E[YY7], where X € R™! Y € R**!

-1/2 exp _1 (l’)T (Rr ny)—l (i[))
2\y) \i, R, y
(X | Y) with zero means ji, = 0, j1,, = 0 follows Gaussian distribution, where 7o = R,, R, Ly

(X |Y)~ N (RyR,'Y, R,—R,R,'R%)

|R, — RoyR,'RT |71/2 1 _ _
(;W) exp {—é(x —20)T (R, — R, R, 1Rfy) Yo — mo)}

So, we know the follows, where A = R, R, L C=R, - Ry R, lRfy

1

fxy(z,y) = (27T)—m2+n

R, Ra,
ng RZ—I

fxy(zly) =

E[X | Y] = RyyR,'Y
T —1pT
E (X ~ E[X | Y)(X ~E[X | Y])" | Y] = R, - Ro, B R,
Note that R, — Ry R, 1ng is positive definite, when X and Y are linear independent.

Step 2: As proved in Chapter 2 Problem 8:
The best estimator # = T'(y) for z when cost function C(x, %) = |x — &[> (Mean Square Error) is,
by minimizing the functional: the Bayes’ Risk J(T') = E[C(z, 2)]
8J(T) = 0E[C(x,2)] = 6E[jz — 2] = 0 = & = T(y) = E[X|y]
Thus, Minimal Mean Square Error (MMSE) estimator it X = T(Y) = E[X|Y]

Step 3: Short proof for Property 2.3 and Property 2.4 in Chapter 2 of textbook MBIP
Property 2.3: for random variable vector X,Y, Z, where f(-) is PDF of random variables

/{/ f(Z dm} zlydz—//xf L7 | dzdx—/f{/f(f,gw)dg]df:/f,f(f|g)df

It hold for any Y = ¢/, so
E[E[X | Y, 2] | Y] = E[X | V]
1



Property 2.4: for random variable vector X,Y, Z, and any function g(X) for X

Elg(X)Z | X, Y] = g(X)E[Z | X, Y]
Set Z = {1} with PDF f(z | Z,9) = f(?) = (- 1)

So, we have
Elg(X) | X, Y] = g(X)
Set {gr(X)}i—, =X € RP, and Z = {1} with PDF f(z | Z,9) = f(?) =0(F— 1)

/z-f-é(z—l)dz: [/2-5(2—1)@1% =7

E[X | X,Y] =X
Especially, consider X — Y)Y — Z E[X | Y] = g(Y)

So, we have

EEX [Y]]Y, 2] =E[g(Y) | Y, Z] = g(Y) = E[X | Y]
It is equivalent to below, consider random variable W = {1} with f(w |y, 2) = f(w) = é(w — 1)

/[/f.f(x\y)df} fw ]y, z)dw = [/f_fmy)df]

Step 4: As proved in hw 1, Chapter 2 problem 4.

Let X be a jointly Gaussian random vector, and let A € R®*¥ be a rank M matrix. Then prove
that the vector Y = AX is also jointly Gaussian.

Since M = rank(A) < min(M, N), we have M < N

Since X is a jointly Gaussian random vector, the PDF fx(x) of X is given by

1 _ 1 _
Felo) = el e { 30— R e =)
Where the mean vector p = E[X], and symmetric positive-definite covariance R = RT =
E[(X = m)(X = p)T]
1 _ 1 _
o) = g ARAT e {10 = A" (ARAT) (g - 40}

So, we prove that the vector Y = AX is also jointly Gaussian.
Y ~ N(Au, ARAT)

Step 5: As proved in hw 1, Chapter 2 problem 5.
Let X ~ N(0, R) where R is a p X p symmetric positive-definite matrix.

a) Prove that if for all i # j, E[X;X;] = 0 (X, and X, are components of X), then X; and X;
are pair-wise independent.

b) Prove that if for all 7, j, X; and X are uncorrelated (X; and X; are components of X), then
the components of X are jointly independent.



3

a) Because all 4, j, X; and X are uncorrelated, we have R;; = 0 for i # j, denote E [X?] = o} for
ke{l,--- p}

0] »

1 1 |
—di 2 ... g2 -1 _ . —1/2_”_
R_ dlag (017 7Up)7 R _dlag( 29 70_2>7 |R| - - O

Thus, for the PDF of X: fx(z) =

M|M

(- \/T;wak exp {— } For k € {1,--- ,p}, we have

+oo 2 1 2
fX<mk) €xp { } H / eXp{ xk, } dxk’ = exp {_&}
\/ Uk 2 -1 k/;ék vV 27]'0'k./ 20‘2/ V 27T0-]g 20’]%

For X;, X;,i # j, we have

1

2700

Felors) = gra—exp{ =55 = 300 b = fxlo) - fx(e

So, we prove that if for all ¢ # j,E[X;X;] =0 (i.e., X; and X; are uncorrelated), then X; and X
are pair-wise independent.

b) Similarly, we conclude

Lol
fX<x1""7mp):g\/ﬂo_keXp{ 20k} HfX Ik

In the end, we prove that if for all ¢, j, X; and X; are uncorrelated, then the components of X are
jointly independent.

Step 6.a: Combine Step 1,2, notice that for random process {X,,}_; with zero-mean E[X,,] = 0,
we know that X,, and {X; for i < n} are jointly Gaussian random vectors.

Define the causal predictor as MMSE estimator X,, = T({X; for i < n}) = E[X,|{X; for i < n}]
based on past {X; for i < n}. Here is the proof of Property 3.1 in textbook MBIP

X, = E[X,|{X; for i <n}]
=K [Xn : (X17 e aanl)] -E |:<X17 e 7Xn71)T : <X17 T 7Xn71>] - : (X17 e aanl)T
- (hn,lu hn,Q e 7hn,n—1) : (X17 e 7Xn—1>T
Where the coefficients of past is given by

(hn,b hn,2 e 7hn,n71) =E [Xn : gXla e 7Xn71)] -E [(Xla e 7anl)T . (Xh T 7Xn71)}_1
Define the error as &, = X,, — X,, = X,, — E[X,,{X, for i <n}|

E[€2] {X;fori<n}] =E [(Xn S X)X for i < n}]
=E [X?J —E [Xn : (Xh T 7Xn71)] ‘E [(Xh e 7Xn71)T : (Xla U 7Xn71)] - ‘E [Xn ’ (Xh T 7Xn71)]T
=E [X,ﬂ - (hn,lu hn,Q o 7hn,n—1)]E [(Xlu e 7Xn—1)T : (Xla e 7Xn—l)} (hn,h hn,Q U 7hn,n—1>T

~E[X?] -E | X}]



Here is the proof of Property 3.2 in textbook MBIP. For X; i < n, we have

E[le(n] =E[X;E[X,[{X; for i <n}]] = /xl [/ Tp - flon | 2y, xpor)den | f(21, - 2p_)day -+ - da,
= /xz @y f(Er, e an)day - da, o day, = /901 sy - f(2, v0)daida,
=E[X;X,]

E[X.E,] = E[X;X,] — E[X;X,] =0
Moreover, for &;,7 < n, we define F,, = {X; for i < n}, then we have
E[&:€n] = E[(X; = E[X; | E]) (X5 — E[X, | Fu])]

= [ [ (s [ttt faan) (5= [0 stan] Fte, ) flon fdna,
— [ (o= [ st iaan) | [ (o0 [ st Fon) fe | Fote| £05047,
— [ (o= [ st iaan) | [ o o, = [ ston | Fin] (5005,
= [ (o= [ s it} -0 e

=0

Since {X,,})_; is Gaussian random process with zero-mean E[X,] = u = 0, we have the jointly
Gaussian PDF for X = (X1, -+, Xy)T, where R = E[X X7]

1
(2)N/2

1
fx(z) = |R|~/% exp {—§xTR_1x} < X ~ N(0,R)

With Step 4, we may define £ = (&, - - ,EN)T, and have

0 0 .. 0

hey 0 0 - O

E=I-H)X=AX, H= : : e
hy-11 hy-12 -+ 0 0

I hya -+ hyn-1 O

The corresponding distribution PDF of £ is

1
= Ty

& E~N(0,(I-H)RI-H))

(I = HYR(I — H)"| " exp {—%eT (I = H)R(I — H)")™' e}

Notice E[&;E,] = 0 for i # n, we know that A = E[EET] is a diagonal matrix
A=E[E€T] = (I — H)R(I — H)" = diag (07, ,0%)

N 1 e2
- —— Vs E~N(0 A
11 gmnexp{ 2} (0,A)




Where o2 = E[£2] = E[E[€2 | {X; for i < n}]] = E [E (X2 - E [Xgﬂ —E[X2]-E [Xﬂ
Consider coefficients for X,,, X,,,1, denote F,, = (X1, , X, 1)T, Fopy = (X1, -+, X,)" = (FT, X,)T
—1
(B on )" =B [(X1, o, X)) (X0, X )| B (X, X )]

-1

(st sz )T =B [ (X0 o, X0 (X, Xn)| B X - (X0, X))

Step 6.b: If random process { X,, }_, with zero-mean E[X,,] = 0, we know that X,, and {X,,_p,- -+, X,,_1}
are jointly Gaussian random vectors.
Furthermore, we can assume {X,,}_, is wide-sense stationary

E[X,|=p=0, E[X,X)|=E[X,X;]—p*=R(n—i|]) VYn,ic{l,--- N}
As proved in Chapter Problem 19, all Gaussian wide-sense stationary random processes are:

a) strict-sense stationary
b) reversible

COV[(Xma T 7Xm+k)T(Xma T aXm+k)] = E[<va e aXm+k>T<va T ,Xm+k)] - 02 “Lexk

R(0)  R(1) R(k)
(R RO) RE=1)
RO RG-1) - RO)

It holds for m > 1,k > 0. Thus, we may set m > n—P>1m+k—-n>P+1,k— P
COV[(Xn—Pa o 7Xn)T(Xn—P7 t 7Xn)] = E[(Xn—Pa e 7Xn)T(Xn—P7 e 7Xn)]

R(O)  R(1) -+ R(P)
(R0 RO BP-D)
RP) RP—1) - R()

R | S
an,p,m,Xn (xn—Pf" ,ZL‘n) = Va5, XPy—= (xn—Pa"' ,lL‘n) R( ) (mn—P7"' ,ZL‘n)
2m)P >

Ixo e X @nepy o T0) = X po X (Tny 0+ T p)
Then we only use the past P samples {X,,_p,- -+, X,,_1} to predict current value X,

~

Xn = E[XnHanPa T 7Xn71}]

=K [Xn : (Xn—Pa e 7Xn—1)] E [(Xn—Pa o aXn—l)T . (Xn—Pa e 7Xn—1)} ! : (Xn—Pa e 7Xn—1)T

= (hn,n7P7 Tty hn,nfl) : (anp, T 7Xn71)T

= (th e ahl) . (Xn—P7 e 7Xn—1)T
Where the coefficients of past is given by

-1

(hn,n—Pa ) hn,n—l) =E [Xn ’ (Xn—P7 e aXn—l)]'E [(Xn—Pv e 7Xn—1>T : (Xn—P7 e 7Xn—1)} =
[R(P),---,R(1)] - {RP~1}~1 :A(hp’ o hy)
Define the error as &, = X,, — X,, = X,, — E[X, { Xo—p, -+ , Xp_1}]



