Homework 7

Course Title: Digital Signal Processing I (Spring 2020)

Course Number: ECE53800

Instructor: Dr. Li Tan

Author: Zhankun Luo

Chapter 8

Problems 8.1, 8.3, 8.6, 8.9, 8.15, 8.19, 8.23, 8.25, 8.26

MATLAB 8.52

Homework 7

Problems Problem 8.1 solution Problem 8.3 solution Problem 8.6 solution Problem 8.9 solution Problem 8.15 solution Problem 8.19 solution Problem 8.23 solution Problem 8.25 solution Problem 8.26 solution **MATLAB** Projects Problem 8.52 solution Original signal Band-pass filter no equalization low-pass filtered band-pass filtered high-pass filtered

Problems

Problem 8.1

Given an analog filter with the transfer function

$$H(s) = rac{1000}{s+1000}$$

convert it to the digital filter transfer function and difference equation using the BLT if the DSP system has a sampling period of T=0.001 s.

solution

 $f_s=1/T=1000~\mathrm{Hz}$

$$H(z) = rac{1000}{s+1000} ert_{s=2f_srac{1-z^{-1}}{1+z^{-1}}} = rac{0.3333+0.3333z^{-1}}{1-0.3333z^{-1}}$$

The difference equation

$$egin{aligned} & [1-0.3333z^{-1}]Y(z) = [0.3333+0.3333z^{-1}]X(z) \ & y(n) - 0.3333y(n-1) = 0.3333x(n) + 0.3333x(n-1) \end{aligned}$$

Thus, y(n) = 0.3333x(n) + 0.3333x(n-1) + 0.3333y(n-1)

The normalized lowpass filter with a cutoff frequency of 1 rad/s is given as

$$H_P(s)=rac{1}{s+1}$$

- 1. Use HP(s) and the BLT to obtain a corresponding IIR digital high-pass filter with a cutoff frequency of 30 Hz, assuming a sampling rate of 200 Hz.
- 2. Use MATLAB to plot the magnitude and phase frequency responses of H(z)

solution

1. $\omega_{zp}=2\pi imes 30$ rad/s, $f_s=200$ Hz

$$\omega_{sp}=2f_s an(rac{\omega_{zp}}{2f_s})=203.8102$$

Then substitute $s'=rac{\omega_{sp}}{s}$, high-pass filter

$$H(s) = rac{1}{s'+1}ert_{s'=rac{\omega_{sp}}{s}} = rac{s}{s+203.8101}$$

Then with BLT

$$\left. H(z) = H(s)
ight|_{z = 2 f_s rac{1 - z^{-1}}{1 + z^{-1}}} = rac{0.6625 - 0.6625 z^{-1}}{1 - 0.3249 z^{-1}}$$

2. Plot the magnitude and phase frequency responses of H(z)

Design a first-order digital lowpass Butterworth filter with a cutoff frequency of 1.5 kHz and a passband ripple of 3 dB at a sampling frequency of 8000 Hz.

- 1. Determine the transfer function and difference equation.
- 2. Use MATLAB to plot the magnitude and phase frequency responses.

solution

1. $\omega_{zp}=2\pi imes1.5 imes10^3$ rad/s, $f_s=8000$ Hz

$$\omega_{sp} = 2 f_s an(rac{\omega_{zp}}{2 f_s}) = 10690.8582$$

The first-order digital lowpass Butterworth filter

$$H(s')=rac{1}{s'+1}$$

Then substitute $s'=rac{s}{\omega_{sp}}$, low-pass filter

$$H(s) = rac{1}{s'+1} ert_{s'=rac{\omega_{sp}}{s}} = rac{10690.8582}{s+10690.8582}$$

Then with BLT, transfer function

$$H(z)=H(s)|_{z=2f_srac{1-z^{-1}}{1+z^{-1}}}=rac{0.4005+0.4005z^{-1}}{1-0.1989z^{-1}}$$

The difference function

$$egin{aligned} & [1-0.1989z^{-1}]Y(z) = [0.4005+0.4005z^{-1}]X(z) \ & y(n) - 0.1989y(n-1) = 0.4005x(n) + 0.4005x(n-1) \end{aligned}$$

Thus,
$$y(n) = 0.4005x(n) + 0.4005x(n-1) + 0.1989y(n-1)$$

2. Plot the magnitude and phase frequency responses of H(z)

Design a second-order digital bandpass Butterworth filter with a lower cutoff frequency of 1.9 kHz, an upper cutoff frequency 2.1 kHz, and a passband ripple of 3 dB at a sampling frequency of 8000 Hz.

- 1. Determine the transfer function and difference equation.
- 2. Use MATLAB to plot the magnitude and phase frequency responses.

solution

1. $\omega_{zp}=2\pi imes [1.9 imes 10^3, 2.1 imes 10^3]$ rad/s, $f_s=8000$ Hz

$$\omega_{sp}=2f_s an(rac{\omega_{zp}}{2f_s})=[14790.2479,17308.7025]$$

The 2nd-order digital lowpass Butterworth filter

$$H(s') = \frac{1}{s'^2 + 1.4142s' + 1}$$

Then substitute $s'=rac{s^2+\omega_{sp}[0]\omega_{sp}[1]}{s(\omega_{sp}[1]-\omega_{sp}[0])}$, band-pass filter

$$H(s) = rac{6.3426 imes 10^6 s^2}{s^4 + 3.5616 imes 10^3 s^3 + 5.1834 imes 10^8 s^2 + 9.1178 imes 10^{11} s + 6.5536 imes 10^{16}}$$

Then with BLT, transfer function

$$H(z) = H(s)|_{z=2f_srac{1-z^{-1}}{1+z^{-1}}} = rac{0.0055 - 0.0111z^{-2} + 0.0055z^{-4}}{1+1.7786z^{-2} + 0.8008z^{-4}}$$

The difference function

$$\begin{split} & [1+1.7786z^{-2}+0.8008z^{-4}]Y(z) = [0.0055-0.0111z^{-2}+0.0055z^{-4}]X(z) \\ & y(n)+1.7786y(n-2)+0.8008y(n-4) = 0.0055x(n)-0.0111x(n-2)+0.0055x(n-4) \\ & \text{Thus, } y(n) = 0.0055x(n)-0.0111x(n-2)+0.0055x(n-4)-1.7786y(n-2)-0.8008y(n-4) \end{split}$$

2. Plot the magnitude and phase frequency responses.

If **order** of Butterworth filter n = 1

1. The 1st-order digital lowpass Butterworth filter

$$H(s')=rac{1}{s'+1}$$

Then substitute $s'=rac{s^2+\omega_{sp}[0]\omega_{sp}[1]}{s(\omega_{sp}[1]-\omega_{sp}[0])}$, band-pass filter

$$H(s) = rac{2518.4546s}{s^2 + 2518.4546s + 2.56 imes 10^8}$$

Then with BLT, transfer function

$$\left. H(z) = H(s)
ight|_{z = 2 f_s rac{1 - z^{-1}}{1 + z^{-1}}} = rac{0.0730 - 0.0730 z^{-2}}{1 + 0.8541 z^{-2}}$$

The difference equation

$$y(n) = 0.0730x(n) - 0.0730x(n-2) - 0.8541y(n-2)$$

2. Plot the magnitude and phase frequency responses.

Design a second-order bandstop digital Chebyshev filter with the following specifications:

- Center frequency of 2.5 kHz
- Bandwidth of 200 Hz
- 1-dB ripple on stopband (should be passband)
- Sampling frequency of 8000 Hz.

1. Determine the transfer function and difference equation.

2. Use MATLAB to plot the magnitude and phase frequency responses.

solution

1. Determine the transfer function and difference equation.

Because
$$rac{\pi}{2}rac{f_{center}}{f_s/2}=2\pirac{f_{center}}{2f_s}>rac{\pi}{2}rac{1}{2}=rac{\pi}{4}$$
, and $an^2(x)< an(x-\Delta x) an(x+\Delta x)$ for $x>rac{\pi}{4}$

For wilder passband, that means attenuation at 2.4kHz, 2.6kHz should < 1dB

<=> bandwidth < 200 Hz

Here we can find $\Delta x' < \Delta x$, satisfy

$$an^2(x) = an(x-\Delta x) an(x+\Delta x')$$

Then, the bandwidth $rac{2f_s}{2\pi}[\Delta x+\Delta x'] < rac{2f_s}{2\pi}[2\Delta x] = 200$ Hz

$$\omega_L = 2 f_s \tan(x-\Delta x) = 22022.1107
onumber \ \omega_H = 2 f_s \tan(x+\Delta x') = rac{[2 f_s \tan(x)]^2}{2 f_s \tan(x-\Delta x)} = rac{\omega_0^2}{\omega_L} = 26037.2942$$

Here, $x=2\pirac{f_{center}}{2f_s}=x=2\pirac{2500}{2f_s}, \Delta x=2\pirac{W/2}{2f_s}=2\pirac{100}{2f_s}$

Design Chebyshev filter, $A_p = 1 dB, arepsilon = \sqrt{10^{A_p/10} - 1} = 0.5088$

Now with order $n=2, \varepsilon=0.5088$, design the Chebyshev filter, n is even

$$egin{aligned} H(s') &= rac{1}{arepsilon 2^{n-1}} rac{1}{\prod_{m=0}^{\left(rac{n}{2}
ight)-1} \left(s'^2 + [2 imes \mathrm{sh} imes s(m)]s' + \left[\mathrm{sh}^2 + 1 - s^2(m)
ight]
ight)} \ &= rac{0.9826}{s^2 + 1.0977s + 1.1025} \end{aligned}$$

Here, $\operatorname{sh} \equiv \sinh\left(\frac{1}{n}\operatorname{arsinh}\left(\frac{1}{\varepsilon}\right)\right)$, $s(m) \equiv \sin\left(\frac{\pi}{2}\left(\frac{1}{n}\right) + \pi\left(\frac{m}{n}\right)\right)$ Then substitute $s' = \frac{s(\omega_H - \omega_L)}{s^2 + \omega_H \omega_L}$, band-stop filter

$$H(s) = rac{0.8913 s^4 + 1.0221 imes 10^9 s^2 + 2.9303 imes 10^{17}}{s^4 + 3.9978 imes 10^3 s^3 + 1.1614 imes 10^9 s^2 + 2.2923 imes 10^{12} s + 3.2878 imes 10^{17}}$$

Next with BLT $H(z)\equiv H(s)ert_{z=2f_srac{1-z^{-1}}{1+z^{-1}}}$, transfer function

$$H(z) = \frac{0.8233 + 1.2602z^{-1} + 2.1288z^{-2} + 1.2602z^{-3} + 0.8233z^{-4}}{1 + 1.4685z^{-1} + 2.3785z^{-2} + 1.3595z^{-3} + 0.8575z^{-4}}$$

The difference equation

$$egin{aligned} & [1+1.4685z^{-1}+2.3785z^{-2}+1.3595z^{-3}+0.8575z^{-4}]Y(z) \ &= [0.8233+1.2602z^{-1}+2.1288z^{-2}+1.2602z^{-3}+0.8233z^{-4}]X(z) \ & y(n) = 0.8233x(n)+1.2602x(n-1)+2.1288x(n-2)+1.2602x(n-3)+0.8233x(n-4) \ & -1.4685y(n-1)-2.3785y(n-2)-1.3595y(n-3)-0.8575y(n-4) \end{aligned}$$

2. plot the magnitude and phase frequency responses.

If **order** of Chebyshev filter n=1

1. For wilder passband, that means attenuation at 2.4kHz, 2.6kHz should < 1dB Design Chebyshev filter, $A_p=1dB, \varepsilon=\sqrt{10^{A_p/10}-1}=0.5088$

Now with order n=1, arepsilon=0.5088, design the Chebyshev filter, n is odd

$$egin{aligned} H(s') &= rac{1}{arepsilon 2^{n-1}} rac{1}{(s+ ext{sh}) \prod_{m=0}^{(rac{n-1}{2})-1} \left(s^2 + [2 imes ext{sh} imes s(m)]s + [ext{sh}^2 + 1 - s^2(m)]
ight)} \ &= rac{1.9652}{s+1.9652} \end{aligned}$$

Here, sh $\equiv \sinh\left(\frac{1}{n} \operatorname{arsinh}\left(\frac{1}{\varepsilon}\right)\right)$, $s(m) \equiv \sin\left(\frac{\pi}{2}\left(\frac{1}{n}\right) + \pi\left(\frac{m}{n}\right)\right)$

Then substitute $s'=rac{s(\omega_H-\omega_L)}{s^2+\omega_H\omega_L}$, band-stop filter

$$H(s) = rac{s^2 + 5.7340 imes 10^8}{s^2 + 2043.1146s + 5.7340 imes 10^8}$$

Next with BLT $H(z)\equiv H(s)ert_{z=2f_srac{1-z^{-1}}{1+z^{-1}}}$, transfer function

$$H(z) = rac{0.9621 + 0.7363 z^{-1} + 0.9621 z^{-2}}{1 + 0.7363 z^{-1} + 0.9242 z^{-2}}$$

The difference equation

$$y(n) = 0.9621x(n) + 0.7363x(n-1) + 0.9621x(n-2) - 0.7363y(n-1) - 0.9242y(n-2)$$

2. plot the magnitude and phase frequency responses.

Consider the following Laplace transfer function:

$$H(s)=rac{10}{s+10}$$

- 1. Determine H(z) and the difference equation using the impulse invariant method if the sampling rate fs=10 Hz.
- 2. Use MATLAB to plot the magnitude frequency response |H(f)| and the phase frequency response $\phi(f)$ with respect to H(s) for the frequency range from 0 to fs/2 Hz.
- 3. Use MATLAB to plot the magnitude frequency response $|H(e^{j\Omega})| = |H(e^{j2\pi fT})|$ and the phase frequency response $\phi(f)$ with respect to H(z) for the frequency range from 0 to fs/2Hz.

solution

1. Laplace inverse transform

$$h(t) = \mathrm{L}^{-1}[H(s)] = 10e^{-10t}$$

Substitute $f_s=10Hz, t=nT=n/f_s$

$$T imes h(n) = rac{1}{f_s} imes h(t)ert_{t=nT} = e^{-10(rac{n}{10})} = e^{-n}$$

Z transform, H(z)

$$H(z) = \mathrm{Z}[T imes h(n)] = \sum_{n=0}^{\infty} e^{-n} z^{-n} = rac{1}{1 - e^{-1} z^{-1}} = rac{1}{1 - 0.3679 z^{-1}}$$

The difference equation: y(n) = x(n) + 0.3679y(n-1)

2. Plot the magnitude and the phase frequency response with respect to H(s), H(z) for the frequency range from 0 to fs/2 Hz.

A second-order notch filter is required to satisfy the following specifications:

- Sampling rate = 8000 Hz
- 3-dB bandwidth: BW=200 Hz
- Narrow passband centered at f_0 =1000 Hz.

Find the transfer function and difference equation by the pole-zero placement method.

solution

Set H(z)

$$egin{aligned} &Krac{(z-e^{j heta_0})(z+e^{-j heta_0})}{(z-r_0e^{j heta_0})(z-r_0e^{-j heta_0})} \ &=Krac{z^2-\cos(heta_0)z+1}{z^2-2r_0\cos(heta_0)z+r_0^2} \end{aligned}$$

First, calculate r_0 with approximate formula

$$r_0 = 2\pi imes rac{0.5 BW}{f_s} = 0.92146$$

compute the $heta_0$

$$heta_0 = 2\pi rac{f_0}{f_s} = 0.7854$$

Then, compute K

$$K = rac{(1+r_0^2)-2r_0\cos(heta_0)}{2-2\cos(heta_0)} = 0.9320$$

Thus, transfer function

$$H(z) = rac{0.9320 - 1.3180 z^{-1} + 0.9320 z^{-2}}{1 - 1.3031 z^{-1} + 0.8491 z^{-2}}$$

The difference equation

y(n) = 0.9320x(n) - 1.3180x(n-1) + 0.9320x(n-2) + 1.3031y(n-1) - 0.8491x(n-2)

A first-order lowpass filter is required to satisfy the following specifications:

- Sampling rate = 8000 Hz
- 3-dB cutoff frequency: f_c = 3800 Hz
- Zero gain at 4000 Hz.

Find the transfer function and difference equation by the pole-zero placement method.

solution

Set H(z)

$$H(z) = K rac{z+1}{z-lpha}$$

First, compute α

$$lpha = rac{1 - an(\pi rac{f_c}{f_s})}{1 + an(\pi rac{f_c}{f_s})} = -0.8541$$

Then compute K

$$K = \frac{|1 - \alpha|}{2} = 0.9270$$

Thus, transfer function

$$H(z)=rac{0.9270+0.9270z^{-1}}{1+0.8541z^{-1}}$$

The difference equation y(n) = 0.9270x(n) + 0.9270x(n-1) - 0.8541y(n-1)

A first-order highpass filter is required to satisfy the following specifications:

- Sampling rate = 8000 Hz
- 3-dB cutoff frequency: f_c = 3850 Hz
- Zero gain at 0 Hz.

Find the transfer function and difference equation by the pole-zero placement method.

solution

Set H(z)

$$H(z) = K \frac{z-1}{z-lpha}$$

First, compute α

$$lpha = rac{1 - an(\pi rac{f_c}{f_s})}{1 + an(\pi rac{f_c}{f_s})} = -0.8886$$

Then compute K

$$K = \frac{|1 + \alpha|}{2} = 0.0557$$

Thus, transfer function

$$H(z) = rac{0.0557 - 0.0557 z^{-1}}{1 + 0.8886 z^{-1}}$$

The difference equation y(n) = 0.0557x(n) - 0.0557x(n-1) - 0.8886y(n-1)

MATLAB Projects

Problem 8.52

Digital speech and audio equalizer Design a seven-band audio equalizer using fourth-order bandpass filters with a sampling rate of 44.1 kHz. The center frequencies are listed in **Table 8.14**. In this project, use the designed equalizer to process a stereo audio ("No9seg.wav").

- Plot the magnitude response for each filter bank.
- Listen and evaluate the processed audio with the following gain settings:
- 1. each filter bank gain=0 (no equalization)
- 2. low-pass filtered
- 3. band-pass filtered
- 4. high-pass filtered

Table 8.14 Specification for Center Frequencies and Bandwidths

Center Frequency (Hz)	160	320	640	1280	2560	5120	10,240
Bandwidth (Hz)	80	160	320	640	1280	2560	5120

solution

Original signal

Band-pass filter

Here we design the filter:

- Chebyshev I filter: order n=3
- Pass band $A_p = 1 \, dB$
- Filter type: band-pass
- center frequency $f_c = [160, 320, 640, 1280, 2560, 5120, 10240]$
- Band-width BW = [80, 160, 320, 640, 1280, 2560, 5120]
- Sampling frequency $f_s = 44.1 \text{ kHz}$

Design Chebyshev filter, $A_p = 1 dB, arepsilon = \sqrt{10^{A_p/10}-1} = 0.5088$

Now with order n=3, arepsilon=0.5088, design the Chebyshev filter, n is odd

$$egin{aligned} H(s') &= rac{1}{arepsilon 2^{n-1}} rac{1}{(s+ ext{sh}) \prod_{m=0}^{(rac{n-1}{2})-1} \left(s^2 + [2 imes ext{sh} imes s(m)]s + [ext{sh}^2 + 1 - s^2(m)]
ight)} \ &= 0.4913 imes rac{1}{s+0.4942} imes rac{1}{s^2+0.4942s+0.9942} \end{aligned}$$

Here, $\operatorname{sh} \equiv \sinh\left(\frac{1}{n}\operatorname{arsinh}\left(\frac{1}{\varepsilon}\right)\right)$, $s(m) \equiv \sin\left(\frac{\pi}{2}\left(\frac{1}{n}\right) + \pi\left(\frac{m}{n}\right)\right)$ Then substitute $s' = \frac{s(\omega_H - \omega_L)}{s^2 + \omega_H \omega_L}$, band-stop filter Here with $\omega = (2f_s) \times \tan\left(\pi \frac{f}{f_s}\right) = (2f_s) \times \tan\left(\frac{2\pi f}{2f_s}\right)$, we have $\omega_L = [754.0, 1508.11, 3017.1, 6041.28, 12139.51, 24747.84, 53725.46]$ and $\omega_H = [1340.5, 2681.49, 5367.0, 10766.21, 21794.31, 45827.05, 115719.83]$

I(s)			
586.4957s			
$= 0.4915 imes rac{1}{1.0s^2 + 289.8289s + 1010735.0299}$			
$343977.2177s^2$			
$ imes \overline{s^4 + 289.8289 s^3 + 2363453.7874 s^2 + 292940262.0727 s + 1021585300762.115}_{1173.382s}$			
$= 0.4913 imes rac{1.0s^2 + 579.8509s + 4043990.9005}{1.0s^2 + 579.8509s + 4043990.9005}$			
$1376825.3819s^2$			
$\overline{s^4} + 579.8509 s^3 + 9456827.9109 s^2 + 2344911788.4637 s + 16353862403450.79 = 2349.8925 s$			
$= 0.4913 imes rac{1.0s^2 + 1161.2478s + 16192794.6791}{1.0s^2 + 1161.2478s + 16192794.6791}$			
$5521994.934s^2$			
$< \overline{s^4 + 1161.2478s^3 + 37875582.0497s^2 + 18803847462.5707s + 2.6221 imes 10^{14}} \ 4724.9293s$			
$= 0.4913 imes rac{1}{s^2 + 2334.9212s + 65041670.5048}$			
$22324957.049s^2$			
$ < \frac{1}{s^4 + 2334.9212s^3 + 152278915.7077s^2 + 151867173966.5871s + 4.2304 \times 10^{15}}{9654.8014s} $			
$s^{2} = 0.4913 imes rac{1}{s^{2} + 4771.119s + 264572327.7615}$			
$93215190.0733s^2$			
$< \frac{100}{s^4 + 4771.119s^3 + 621819625.0523s^2 + 1262306072671.3513s + 6.9999 imes 10^{16}}{21079.2088s}$			
$s=0.4913 imes rac{1}{s^2+10416.7253s+1134120477.0311}$			
$444333041.5525s^2$			
$ imes \overline{ rac{1.0s^4 + 10416.7253s^3 + 2709998902.0356s^2 + 11813821511707.322s + 1.2862 imes 10^{18}}_{61994.3763s}$			
$= 0.4913 imes rac{1}{s^2 + 30635.7984s + 6217101105.0179}$			
$3843302690.7742s^2$			
X			

Thus, H(z)

$$\begin{split} H(z) &= [(1.4345 \times 10^{-7} - 4.3035 \times 10^{-7}z^{-2} - 0.0z^{-3} + 4.3035 \times 10^{-7}z^{-4} - 1.4345 \times 10^{-7}z^{-6}) \\ /(1.0 - 5.9852z^{-1} + 14.9276z^{-2} - 19.8588z^{-3} + 14.8624z^{-4} - 5.933z^{-5} + 0.9869z^{-6})] \\ = [(1.1398 \times 10^{-6} - 3.4194 \times 10^{-6}z^{-2} + 0.0z^{-3} + 3.4194 \times 10^{-6}z^{-4} - 1.1398 \times 10^{-6}z^{-6}) \\ /(1.0 - 5.967z^{-1} + 14.8421z^{-2} - 19.6985z^{-3} + 14.7127z^{-4} - 5.8633z^{-5} + 0.9741z^{-6})] \\ = [(8.9896 \times 10^{-6} - 2.6969 \times 10^{-5}z^{-2} - 0.0z^{-3} + 2.6969 \times 10^{-5}z^{-4} - 8.9896 \times 10^{-6}z^{-6}) \\ /(1.0 - 5.9207z^{-1} + 14.6327z^{-2} - 19.3225z^{-3} + 14.3786z^{-4} - 5.7169z^{-5} + 0.9488z^{-6})] \\ = [(6.9757 \times 10^{-5} - 0.0002093z^{-2} + -0.0z^{-3} + 0.0002093z^{-4} - 6.9757 \times 10^{-5}z^{-6}) \\ /(1.0 - 5.7893z^{-1} + 14.0683z^{-2} - 18.3659z^{-3} + 13.5846z^{-4} - 5.3981z^{-5} + 0.9004z^{-6})] \\ = [(0.0005209 - 0.001563z^{-2} + 0.0z^{-3} + 0.001563z^{-4} - 0.000521z^{-6}) \\ /(1.0 - 5.3813z^{-1} + 12.4453z^{-2} - 15.7999z^{-3} + 11.6086z^{-4} - 4.6826z^{-5} + 0.812z^{-6})] \\ = [(0.0035 - 0.0z^{-1} - 0.0106z^{-2} + 0.0106z^{-4} + 0.0z^{-5} - 0.0035z^{-6}) \\ /(1.0 - 4.0872z^{-1} + 8.1194z^{-2} - 9.5695z^{-3} + 7.0896z^{-4} - 3.1149z^{-5} + 0.6669z^{-6})] \\ = [(0.0183 - 0.0548z^{-2} + 0.0548z^{-4} - 0.0183z^{-6}) \\ /(1.0 - 0.5511z^{-1} + 2.0431z^{-2} - 0.7891z^{-3} + 1.6473z^{-4} - 0.3362z^{-5} + 0.4822z^{-6})] \\ = [7.0005z^{-5} + 0.0548z^{-4} - 0.0183z^{-6}) \\ /(1.0 - 0.5511z^{-1} + 2.0431z^{-2} - 0.7891z^{-3} + 1.6473z^{-4} - 0.3362z^{-5} + 0.4822z^{-6})] \\ = [7.0005z^{-5} + 0.812z^{-6})] \\ = [7.0005z^{-5} + 0.812z^{-6})] \\ = [7.0005z^{-5} + 0.812z^{-6}] \\ = [7.0005z^{-5} + 0.812z$$

$$egin{aligned} Y(z) &\equiv X(z) + \sum_{k=1}^7 \mathrm{Gain}_k imes H(z)_k X(z) \ y(n) &= x(n) + \sum_{k=1}^7 \mathrm{Gain}_k imes [h_k(n) st x(n)] \end{aligned}$$

no equalization

Gain = [0, 0, 0, 0, 0, 0, 0]

low-pass filtered

 ${
m Gain} = [1, 1, 1, 0, 0, 0, 0]$

We can see there are 3 peaks [160, 320, 640] in the filtered spectrum,

components in these band [80, 160, 320] are strengthened by the low-pass filter.

We can hear low frequency components more clearly.

band-pass filtered

 $\mathrm{Gain} = \left[0, 0, 1, 1, 1, 0, 0\right]$

We can see there are 3 peaks[640, 1280, 2560] in the filtered spectrum,

components in these band[320, 640, 1280] are strengthened by the band-pass filter.

We can hear the frequency components in specific frequency band more clearly.

high-pass filtered

 ${
m Gain} = [0, 0, 0, 0, 1, 1, 1]$

We can see there are 3 peaks[2560, 5120, 10240] in the filtered spectrum,

components in these band[1280, 2560, 5120] are strengthened by the high-pass filter.

We can hear low frequency components more clearly.

Here is the main Python script with my IIR implementation library.

The IIR library implements:

- Calculation, substitution of Polynomial, Fraction of Polynomial H(s), H(z)
- BLT, unit low-pass filter H(s') to low-pass, high-pass, band-pass, band-stop
- Magnitude|H|, Phase $\angle H$ of H(s), H(z)
- FFT to calculate A_k of X(k), Y(k)
- Butterworth, Chebyshev I filter: H(s)
- IIR filter: $y(n) = \sum_{k=0}^{M} b_k x(n-k) \sum_{k=1}^{N} a_k y(n-k)$
- Pole-zero Placement parameters
- Plot of Impulse invariance

```
from scipy.io.wavfile import write, read # save sounds
from iir_filter.fft1d import plot_spectrum_dB
from iir_filter.frac import Frac, convert_s2z
from iir_filter.poly import Poly, Polyz
from iir_filter.util import convert_omega_z2s, filter_subs, calc_omega_pass
from iir_filter.calc_mag_angle import calc_mag_angle, plot_mag_freq_multiple
from iir_filter.protype import chebyshev_protype, calc_cheby_eps2
from iir_filter.iir_filter import iir_filter
from math import pi, sqrt, ceil
from functools import reduce
f_sample, list_input = read("./No9seg.wav") # sample rate, input
list_input_ch1, list_input_ch2 = list_input.T[0], list_input.T[1]
plot_spectrum_dB(list_input_ch1, f_sample, path_fig="../p8_52_input_ch1.png",
str_title="Original No9seg.wav (ch 1)")
plot_spectrum_dB(list_input_ch2, f_sample, path_fig="../p8_52_input_ch2.png",
str_title="Original No9seg.wav (ch 2)")
list_f_center = [160, 320, 640, 1280, 2560, 5120, 10240]
list_BW = [80, 160, 320, 640, 1280, 2560, 5120]
list_omega_pass_low = [2*pi*(f_center - 0.5 * BW) for f_center, BW in
list(zip(list_f_center, list_BW))]
list_omega_pass_high = [2*pi*(f_center + 0.5 * BW) for f_center, BW in
list(zip(list_f_center, list_BW))]
list2D_omega_pass_z = list(zip(list_omega_pass_low, list_omega_pass_high))
num_filter = len(list2D_omega_pass_z)
order = 3
A_p = 1
epsilon = sqrt( calc_cheby_eps2(A_p) )
print("epsilon = " + str(epsilon))
list_H_s = chebyshev_protype(order, epsilon)
print(list_H_s)
list_H_z = []
list2D_mag, list2D_omega = [], []
for ind in range(num_filter):
    list_omega_pass_z = list2D_omega_pass_z[ind]
    list_omega_pass_s = calc_omega_pass(list_omega_pass_z, f_sample,
str_filter_type="band_pass")
    print(list_omega_pass_s)
```

```
list_H_subs = [filter_subs(H_s, list_omega_pass_s, str_filter_type="band_pass") for
H_s in list_H_s]
    print(list_H_subs)
   H_subs = reduce(lambda x,y: x * y, list_H_subs)
    print(H_subs)
    H_z = convert_s2z(H_subs, f_sample)
    print(H_z)
    list_H_z.append(H_z)
    list_mag, list_angle, list_omega = calc_mag_angle(H_z, num_point=4096)
    list2D_mag.append(list_mag)
   list2D_omega.append(list_omega)
plot_mag_freq_multiple(list2D_mag, list2D_omega, f_sample, path_fig="../p8_52_H_z.png")
# band_gain = [1] + [0, 0, 0, 0, 0, 0] # the first 1 represent original input gain: no
equalization
# band_gain = [1] + [1, 1, 1, 0, 0, 0, 0] # low pass
\# band_gain = [1] + [0, 0, 1, 1, 1, 0, 0] \# band pass
band_gain = [1] + [0, 0, 0, 0, 1, 1, 1] # high pass
list2D_output_ch1 = [list_input_ch1]
list2D_output_ch2 = [list_input_ch2]
for H_z in list_H_z:
    list2D_output_ch1.append( iir_filter(list_input_ch1, H_z) )
    list2D_output_ch2.append( iir_filter(list_input_ch2, H_z) )
list2D_output_ch1 = list(map(list, zip(*list2D_output_ch1))) # transpose
list2D_output_ch2 = list(map(list, zip(*list2D_output_ch2)))
list_output_ch1, list_output_ch2 = [], []
for out_ch1, out_ch2 in list(zip(list2D_output_ch1, list2D_output_ch2)):
    list_output_ch1.append( int(sum([elem * gain for elem, gain in list(zip(out_ch1,
band_gain))])) )
    list_output_ch2.append( int(sum([elem * gain for elem, gain in list(zip(out_ch2,
band_gain))])) )
plot_spectrum_dB(list_output_ch1, f_sample, path_fig="../p8_52_output_high pass_ch1.png",
str_title="Filtered No9seg.wav (ch 1)")
plot_spectrum_dB(list_output_ch2, f_sample, path_fig="../p8_52_output_high pass_ch2.png",
str_title="Filtered No9seg.wav (ch 2)")
import numpy as np
list_output = np.asarray([list_output_ch1, list_output_ch2]).T
max_output = max(np.max(list_output), -np.min(list_output))
factor = (2^{**}(16-1)/max_output)
list_output_scaled = np.floor(list_output * factor).astype(np.int16)
write("../No9seg_high pass.wav", f_sample, list_output_scaled)
```