Homework 2

Course Title: Digital Signal Processing I (Spring 2020)

Course Number: ECE53800

Instructor: Dr. Li Tan

Author: **Zhankun Luo**

Problem: Problems 3.2: a, c, 3.6, 3.9: a,b, 3.10, 3.13, 3.15, 3.18: a, b, 3.23, 3.27, 3.28

3.30: b, d, 3.31 c, 3.34

Problems

Problem 3.2

Calculate the first eight sample values and sketch each of the following sequences:

(a) $x(n) = 5 \sin(0.2\pi n) u(n)$ (c) $x(n) = 5 \cos(0.1\pi n + 30^{\circ})u(n)$

solution

Problem 3.6

Given the digital signals x(n) in Figs. 3.24 and 3.25, write an expression for each digital signal using the unitimpulse sequence and its shifted sequences.

2. Fig 3.25

$$
x(n)=\delta(n-1)-\delta(n-2)+\delta(n-4)-\delta(n-5)
$$

Problem 3.9

Assume that a digital signal processor with a sampling time interval of 0.01 s converts each of the following analog signals x(t) to a digital signal x(n), determine the digital sequences for each of the following analog signals.

(a)
$$
x(t) = e^{-50t}u(t)
$$

(b) $x(t) = 5 \sin(20\pi t)u(t)$

solution

 $T = 0.01$, then $x(n) \equiv x(t)|_{t=nT}$, so having:

(a)
$$
x(n) = e^{-50t}u(t)|_{t=nT} = e^{-50Tn}u(nT) = e^{-0.5n}u(n)
$$

\n(b) $x(n) = 5\sin(20\pi t)u(t)|_{t=nT} = 5\sin(20\pi Tn)u(nT) = 5\sin(0.2\pi n)u(n)$

Problem 3.10

Determine which of the following systems is a linear system.

$$
\begin{array}{ll} (a) & y(n) = 5x(n) + 2x^2(n) \\ (b) & y(n) = x(n-1) + 4x(n) \\ (c) & y(n) = 4x^3(n-1) - 2x(n) \end{array}
$$

solution

1. (a) Nonlinear system:

Example: set $x_1(n) = -1, x_2(n) = 1, x(n) \equiv x_1(n) + x_2(n) = 0$ Having $y_1(n) = -5 + 2 = -3$, $y_2(n) = 5 + 2 = 7$, $y(n) = 0 + 0 = 0$ Here $y(n) \neq y_1(n) + y_2(n)$

2. (b) Linear system:

For any input $x_1(n), x_2(n)$, and $a, b \in R$

$$
\operatorname{set} x(n) \equiv ax_1(n) + bx_2(n)
$$

we have

$$
y_1(n)=x_1(n-1)+4x_1(n)\\ y_2(n)=x_2(n-1)+4x_2(n)\\ y(n)=x(n-1)+4x(n)=[ax_1(n-1)+bx_2(n-1)]+4[ax_1(n)+bx_2(n)]\\ =a[x_1(n-1)+4x_1(n)]+b[x_2(n-1)+4x_2(n)]=ay_1(n)+by_2(n)
$$

3. (c) Nonlinear system:

Example: set $x_1(n) = 2, x_2(n) = 1, x(n) \equiv x_1(n) + x_2(n) = 3$ Having $y_1(n) = 28, y_2(n) = 2, y(n) = 102$ Here $y(n) \neq y_1(n) + y_2(n)$

Problem 3.13

Given the following linear systems, find which one is time invariant.

$$
\begin{array}{ll} (a) & y(n) = -5x(n-10) \\ (b) & y(n) = 4x(n^2) \end{array}
$$

solution

1. (a) time invariant

For input
$$
x_1(n)
$$
, the shifted input of n samples $x_2(n) \equiv x_1(n - n_0)$

$$
y_1(n)=-5x_1(n-10)\\ y_1(n-n_0)=-5x_1(n-n_0-10) \quad \text{[replacing n by $n-n_0$]}\\ y_2(n)=-5x_2(n-10)=-5x_1(n-n_0-10) \quad \text{[replacing $x_2(n-10)$ by $x_1(n-n_0-10)]$}
$$

So, having

$$
y_1(n-n_0)=y_2(n)\,.
$$

2. (b) time varying

For input $x_1(n)$, the shifted input of n samples $x_2(n) \equiv x_1(n - n_0)$

$$
y_1(n)=4x_1(n^2)\\ y_1(n-n_0)=4x_1((n-n_0)^2)\quad \text{[replacing n by $n-n_0$]}\\ y_2(n)=4x_2(n^2)=4x_1(n^2-n_0)\quad \text{[replacing $x_2(n^2)$ by $x_1(n^2-n_0)$]}
$$

So, having

$$
y_1(n-n_0)\neq y_2(n)
$$

Problem 3.15

Determine the causality for each of the following linear systems.

- (a) $y(n) = 0.5x(n) + 20x(n-2) 0.1y(n-1)$
- (b) $y(n) = x(n+2) 0.4y(n-1)$
- (c) $y(n) = x(n-1) + 0.5y(n+2)$

solution

(a) Causal; (b) Noncausal; (c) Causal

(a) Since the output y(n) depends on the current input $x(n)$ and the past input $x(n-2)$, and past output y(n-1), the system is causal.

(b) Since the output $y(n)$ depends on the future input $x(n+2)$, the system is noncausal.

(c) We can rewrite the formula:

$$
\begin{aligned} 0.5y(n) &= y(n-2) - x(n-3) \\ y(n) &= 2y(n-2) - 2x(n-3) \end{aligned}
$$

Since the output $y(n)$ depends on the past input $x(n-3)$ and the past output $y(n-2)$, the system is causal.

Problem 3.18

Find the unit-impulse response for each of the following linear systems.

(a) $y(n) = 0.2x(n) - 0.3x(n-2)$; for $n \ge 0, x(-2) = 0, x(-1) = 0$ (b) $y(n) = 0.5y(n-1) + 0.5x(n);$ for $n \ge 0, y(-1) = 0$

solution

1. (a) the unit-impulse response, by replacing $x(n), x(n-2), y(n)$ with $\delta(n), \delta(n-2), h(n)$, having:

$$
h(n)=0.2\delta(n)-0.3\delta(n-2)\quad [n\geq 0]
$$

2. (b) the unit-impulse response, by replacing $x(n), y(n-1), y(n)$ with $\delta(n), h(n-1), h(n)$, having: $h(n) = 0.5h(n-1) + 0.5\delta(n)$ $[n \ge 0, h(-1) = 0]$

Mathematical induction

- 1. **The initial case:** We know that $h(-1) = 0$
	- $h(0) = 0.5 \cdot 0 + 0.5\delta(0) = 0.5$
	- So having $h(0) = 0.5 = 0.5^{0+1}$
- 2. **The induction step:** Then from $h(n) = 0.5h(n-1)$ $[n-1 \ge 0]$

When
$$
h(n-1) = 0.5^n
$$
 $[n-1 \ge 0]$, we can infer that

$$
h(n-1) = 0.5^n
$$
 $[n-1 \ge 0] \Longrightarrow h(n) = ah(n-1) = 0.5^{n+1}$ $[n \ge 0]$

Conclusion: $h(n) = 0.5^{n+1}$ $[n \ge 0]$

Problem 3.23

$$
h(k) = \begin{cases} \, 2, & k = 0,1,2 \\ \, 1, & k = 3,4 \\ \, 0 & \text{elsewhere} \end{cases} \quad \text{and } x(k) = \begin{cases} \, 2, & k = 0 \\ \, 1, & k = 1,2 \\ \, 0 & \text{elsewhere} \end{cases}
$$

evaluate the digital convolution

$$
y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)
$$

- 1. the graphical method;
- 2. the table method;
- 3. applying the convolution formula directly

solution

1. the graphical method;

So we have:

 $y(n) = 4\delta(n) + 6\delta(n-1) + 8\delta(n-2) + 6\delta(n-3) + 5\delta(n-4) + 2\delta(n-5) + \delta(n-6)$

2. the table method;

So we have

$$
y(n) = 4\delta(n) + 6\delta(n-1) + 8\delta(n-2) + 6\delta(n-3) + 5\delta(n-4) + 2\delta(n-5) + \delta(n-6)
$$

3. applying the convolution formula directly

$$
h(k) = 2\delta(k) + 2\delta(k-1) + 2\delta(k-2) + \delta(k-3) + \delta(k-4)
$$

$$
x(k) = 2\delta(k) + \delta(k-1) + \delta(k-2)
$$

$$
x(n-k) = 2\delta(n-k) + \delta(n-k-1) + \delta(n-k-2)
$$

So we have

$$
y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)
$$

=
$$
\sum_{k=-\infty}^{\infty} [2\delta(k) + 2\delta(k-1) + 2\delta(k-2) + \delta(k-3) + \delta(k-4)]x(n-k)
$$

=
$$
2x(n) + 2x(n-1) + 2x(n-2) + x(n-3) + x(n-4)
$$

=
$$
2[2\delta(n) + \delta(n-1) + \delta(n-2)] + 2[2\delta(n-1) + \delta(n-2) + \delta(n-3)]
$$

+
$$
2[2\delta(n-2) + \delta(n-3) + \delta(n-4)]
$$

+
$$
[2\delta(n-3) + \delta(n-4) + \delta(n-5)] + [2\delta(n-4) + \delta(n-5) + \delta(n-6)]
$$

=
$$
4\delta(n) + 6\delta(n-1) + 8\delta(n-2) + 6\delta(n-3) + 5\delta(n-4) + 2\delta(n-5) + \delta(n-6)
$$

Problem 3.27

Determine the stability for the following linear system.

$$
y(n)=0.5x(n)+100x(n-2)-20x(n-10)\\
$$

solution

Stable system:

Consider the impulse response $h(n)$, having

$$
h(n) = 0.5\delta(n) + 100\delta(n-2) - 20\delta(n-10)
$$

Then, for y(n)

$$
|y(n)| = |\sum_{k=-\infty}^{\infty} h(k)x(n-k)|
$$

=
$$
|\sum_{k=-\infty}^{\infty} [0.5\delta(k) + 100\delta(k-2) - 20\delta(k-10)]x(n-k)|
$$

=
$$
|0.5x(n) + 100x(n-2) - 20x(n-10)|
$$

<
$$
< M[|0.5| + |100| + |-20|] < 120.5M
$$

Hence, we obtain a bounded output with a bounded input.

Problem 3.28

Determine the stability for each of the following linear systems.

$$
\begin{array}{ll} (a) & y(n)=\displaystyle \sum_{k=0}^{\infty} 0.75^k x(n-k) \\ (b) & y(n)=\displaystyle \sum_{k=0}^{\infty} 2^k x(n-k) \end{array}
$$

solution

1. (a) Stable

When $|x(n)| < M$, with the bounded input, we have

$$
\begin{aligned}|y(n)| &= \sum_{k=0}^{\infty} 0.75^k x(n-k) \\ &< M \sum_{k=0}^{\infty} |0.75^k| = M \frac{1}{1-0.75} = 4M \end{aligned}
$$

Hence, we obtain a bounded output with a bounded input.

2. (b) Not stable

When $|x(n)| < M$, with the bounded input, let us set $x(n) = u(n)$, M can be 2

$$
y(n) = \sum_{k=\infty}^{\infty} 2^k u(k) u(n-k) = \sum_{k=\infty}^{\infty} 2^{n-k} u(n-k) u(k) = 2^n \sum_{k=0}^n 2^{-k} \quad [n \ge 0]
$$

=
$$
2^n \frac{1 - 2^{-n-1}}{1 - 0.5} \ge 2^n \quad [n \ge 0]
$$

So, we have

$$
\lim_{n\to\infty}y(n)=\lim_{n\to\infty}2^n=+\infty
$$

We will obtain the unbounded output.

Advanced Problems

Problem 3.30

Given each of the following discrete-time systems,

(b)
$$
y(n) = x(n-1) + 0.5y(n-2)
$$

(d) $y(n) = |x(n)|$

determine if the system is (1) linear or nonlinear; (2) time invariant or time varying; (3) causal or noncausal; and (4) stable or unstable.

solution

1. (b) Linear; (d) Nonlinear

(b) Linear

For any input $x_1(n), x_2(n)$, and $a, b \in R$

$$
\mathop{\rm set}\nolimits x(n) \equiv a x_1(n) + b x_2(n)
$$

we have

$$
y_1(n)=\sum_{k=-\infty}^{\infty}h(k)x_1(n-k)\\ y_2(n)=\sum_{k=-\infty}^{\infty}h(k)x_2(n-k)\\ y(n)=\sum_{k=-\infty}^{\infty}h(k)x(n-k)=\sum_{k=-\infty}^{\infty}h(k)[ax_1(n-k)+bx_2(n-k)]\\ =a[\sum_{k=-\infty}^{\infty}h(k)x_1(n-k)]+b[\sum_{k=-\infty}^{\infty}h(k)x_2(n-k)]=ay_1(n)+by_2(n)
$$

(d) Nonlinear

Example: set $x_1(n) = -1, x_2(n) = 1, x(n) \equiv x_1(n) + x_2(n) = 0$ Having $y_1(n) = 1, y_2(n) = 1, y(n) = 0$ Here $y(n) \neq y_1(n) + y_2(n)$

2. (b) time invariant; (d) time invariant

(b) time invariant

For input $x_1(n)$, the shifted input of n samples $x_2(n) \equiv x_1(n - n_0)$

$$
y_1(n) = \sum_{k=-\infty}^{\infty} h(k)x_1(n-k)
$$

$$
y_1(n-n_0) = \sum_{k=-\infty}^{\infty} h(k)x_1(n-n_0-k) \quad \text{[replacing n by } n-n_0]
$$

$$
y_2(n) = \sum_{k=-\infty}^{\infty} h(k)x_2(n-k) = \sum_{k=-\infty}^{\infty} h(k)x_1(n-n_0-k) \quad \text{[replacing } x_2(n-k) \text{ by } x_1(n-n_0-k)]
$$

So, having

$$
y_1(n - n_0) = y_2(n)
$$

(d) time invariant

For input $x_1(n)$, the shifted input of n samples $x_2(n) \equiv x_1(n - n_0)$

$$
y_1(n)=|x_1(n)|\\ y_1(n-n_0)=|x_1(n-n_0)| \quad \text{[replacing n by $n-n_0$]}\\ y_2(n)=|x_2(n)|=|x_1(n-n_0)| \quad \text{[replacing $x_2(n)$ by $x_1(n-n_0)$]}
$$

So, having

$$
y_1(n-n_0)=y_2(n)\,
$$

3. (b) Causal; (d) Causal

(b) Since the output y(n) depends on the past input x(n-1) , and past output y(n-2), the system is causal.

(d) Since the output y(n) depends on the current input x(n) , the system is causal.

4. (b) Stable; (d) Stable

(b) When $|x(n)| < M$, with the bounded input, we have

$$
h(n)-0.5h(n-2)=\delta(n-1)\quad[h(-2)=h(-1)=0] \\ h(n)=0.5[(\frac{1}{\sqrt{2}})^{n-1}+(\frac{-1}{\sqrt{2}})^{n-1}]u(n-1)
$$

Then, for y(n)

$$
|y(n)| = |\sum_{k=-\infty}^{\infty} h(k)x(n-k)|
$$

\n
$$
= |\sum_{k=-\infty}^{\infty} h(k+1)x(n-k-1)|
$$

\n
$$
< M \sum_{k=-\infty}^{\infty} |h(k+1)|
$$

\n
$$
< M \sum_{k=-\infty}^{\infty} |0.5[(\frac{1}{\sqrt{2}})^k + (\frac{-1}{\sqrt{2}})^k]u(k)|
$$

\n
$$
< M \sum_{k=0}^{\infty} (\frac{1}{\sqrt{2}})^k = M \frac{1}{1 - \frac{1}{\sqrt{2}}} = M \frac{\sqrt{2}}{\sqrt{2} - 1}
$$

Hence, we obtain a bounded output with a bounded input.

(d) When $|x(n)| < M$, with the bounded input, we have

$$
\vert y(n)\vert = \vert x(n)\vert
$$

Hence, we obtain a bounded output with a bounded input.

Problem 3.31

Given each of the following discrete-time systems,

$$
(c) \quad y(n) = \operatorname{round}[x(n)]
$$

determine if the system is (1) linear or nonlinear; (2) time invariant or time varying; (3) causal or noncausal; and (4) stable or unstable.

solution

1. Nonlinear

Example: set $x_1(n) = 3.4, x_2(n) = 0.2, x(n) \equiv x_1(n) + x_2(n) = 3.6$ Having $y_1(n) = \text{round}[3.4] = 3, y_2(n) = \text{round}[0.2] = 0, y(n) = \text{round}[3.6] = 4$ Here $y(n) \neq y_1(n) + y_2(n)$

2. time invariant

For input $x_1(n)$, the shifted input of n samples $x_2(n) \equiv x_1(n - n_0)$

$$
y_1(n)=\text{round}[x_1(n)]\\ y_1(n-n_0)=\text{round}[x_1(n-n_0)]\quad \text{[replacing n by }n-n_0]\\ y_2(n)=\text{round}[x_2(n)]=\text{round}[x_1(n-n_0)]\quad \text{[replacing $x_2(n)$ by $x_1(n-n_0)]}
$$

So, having

$$
y_1(n-n_0)=y_2(n)\,
$$

3. Causal

Since the output $y(n)$ depends on the current input $x(n)$, the system is causal.

4. Stable

When $|x(n)| < M$, with the bounded input, we have

$$
|y(n)|=|\operatorname{round}[x(n)]|\leq\max(|x(n)-0.5|,|x(n)+0.5|)\leq|x(n)|+0.5
$$

Hence, we obtain a bounded output with a bounded input.

Problem 3.34

Given a relaxed discrete-time system,

$$
y(n) - ay(n-1) = x(n) \\
$$

1. Show that the impulse response is

$$
h(n)=a^{\textcolor{red}{n}}u(n)
$$

2. If the impulse response of a relaxed discrete-time system is found as

$$
h(n)=\left\{\begin{matrix}a^n&n\geq 0,n=\ {\rm even}\\0&{\rm otherwise}\end{matrix}\right.
$$

determine the discrete-time system equation.

solution

- 1. If $a = 0$, we have $h(n) = h(n) 0 \cdot h(n-1) = \delta(n) = 0^n u(n)$ Now consider $a \neq 0$
	- A. **Mathematical induction**
		- 1. **The initial case:** Here we need the additional condition: $h(-1) = 0$
		- 2. **The induction step:** Then from $h(n) ah(n-1) = \delta(n)|_{n<0} = 0$ $[n < 0]$

When $h(n) = 0$ $[n < 0]$, we can infer that

$$
h(n)=0\ [n<0]\Longrightarrow h(n-1)=\frac{h(n)-0}{a}=0\ [n-1<0]
$$

Conclusion A: $h(n) = 0$ $[n < 0]$

- B. **Mathematical induction**
- 1. **The initial case:** We know that $h(-1) = 0$

$$
\left.h(0)-ah(-1)=\delta(n)\right|_{n=0}=1
$$

So having $h(0) = 1 = a^0$

2. **The induction step:** Then from $h(n) - ah(n-1) = 0$ $[n-1 \ge 0]$

When $h(n-1) = a^{n-1} [n-1 \ge 0]$, we can infer that

$$
h(n-1)=a^{n-1}\;[n-1\geq 0]\Longrightarrow h(n)=ah(n-1)+0=a^n\;[n\geq 0]
$$

Conclusion B: $h(n) = a^n$ $[n \ge 0]$

Combine conclusion A and B, we have $h(n) = a^n u(n)$ for $a \neq 0$

Summary: $h(n) = a^n u(n)$ for $\forall a \in R$

2. We know the impulse response $h(n)$, and we can write as

$$
h(n)=0.5[a^n+(-a)^n]u(n)\quad
$$

For $y(n), y(n-2)$, we have

$$
y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)
$$

$$
a^2y(n-2) = \sum_{k=-\infty}^{\infty} a^2h(k-2)x(n-k)
$$

Because

$$
h(k) - a^2h(k-2) = 0.5[a^k + (-a)^k]u(k) - a^2 \cdot 0.5[a^{k-2} + (-a)^{k-2}]u(k-2)
$$

\n
$$
= 0.5[a^k + (-a)^k][u(k) - u(k-2)]
$$

\n
$$
= 0.5[a^k + (-a)^k][\delta(k) + \delta(k-1)]
$$

\n
$$
= 0.5[a^k + (-a)^k]\delta(k) + 0.5[a^k + (-a)^k]\delta(k-1)
$$

\n
$$
= 0.5[a^0 + (-a)^0]\delta(k) + 0.5[a^1 + (-a)^1]\delta(k-1)
$$

\n
$$
= \delta(k)
$$

So, we have

$$
y(n) - a^2y(n-2) = \sum_{k=-\infty}^{\infty} [h(k) - a^2h(k-2)]x(n-k)
$$

=
$$
\sum_{k=-\infty}^{\infty} \delta(k)x(n-k)
$$

=
$$
\sum_{k=-\infty}^{\infty} \delta(k)x(n-0)
$$

=
$$
x(n) \sum_{k=-\infty}^{\infty} \delta(k)
$$

=
$$
x(n)
$$

Finally, the discrete-time system equation:

$$
y(n)-a^2y(n-2)=x(n)\\
$$