
Least Mean Squares and Recursive Least
Squares

 

Signal with noise  

  
 :=  where  means an operator to apply on the series , such as: 

difference, delay,  summing up

We want to use the history data of  to predict , the predicted value is 
,  [which requires , then we 

can use  to approximate ]

treat random variables  and  independent for each 

now find the best parameter  for   to predict ,  we name the difference 
between them as , which approximates signal 

As above, consider total  samples 
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Wiener Filter - the minimal error energy  

Define:

Then we have

To minimize the , we can make sure

Assumption: Random Process  is a wide-sense ergodic process(must be an wide-sense 
stationary process),  are jointly wide-sense ergodic, as , we have

for element ,  where  

for element , where 

note:  can be solved by Levinson–Durbin Recursion

https://en.wikipedia.org/wiki/Levinson_recursion
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341
-discrete-time-signal-processing-fall-2005/lecture-notes/lec13.pdf
http://sepwww.stanford.edu/sep/prof/fgdp/c7/paper_html/node6.html
https://link.springer.com/content/pdf/bbm%3A978-0-387-68899-2%2F1.pdf
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https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-processing-fall-2005/lecture-notes/lec13.pdf
http://sepwww.stanford.edu/sep/prof/fgdp/c7/paper_html/node6.html
https://link.springer.com/content/pdf/bbm%3A978-0-387-68899-2%2F1.pdf


Remark on Assumption  

Random Process  is a wide-sense ergodic process(must be an wide-sense stationary 
process),  are jointly wide-sense ergodic, as , we have

Random Process  is a wide-sense ergodic process(must be an wide-sense stationary 
process),

for an wide-sense stationary process: for  
（1） （const） （2）

https://en.wikipedia.org/wiki/Ergodic_process

for constant 

we compute the estimate with samples among 

 the expectation  as 

 the expectation  as 
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https://en.wikipedia.org/wiki/Convergence_in_mean


LMS - least mean squares filter  

We approximates the -th sample of  :  as the expectation of 

Notice Note3, it requires that the inequality holds for the learning rate  and the 
eigenvalues of :  to ensure the convergence of our method

Notice Note1, Note2

When , , 

we can choose  to ensure the convergence of our method

Note 1  

The coefficient of  must come from , 

because any term involving an off-diagonal  element  eliminates  
and , 

hence any such term does not involve . 

So, the coefficient of  is 

Thus

recursive least squares
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Note 2  

Consider

R must be positive definite

because , 

Here  can NOT be satisfied for all n'

So, for all , having , thus

When , , 

and notice 
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Note 3  

Where , so the eigenvalues of :  should  of the corresponding 
eigenvalues of ,  thus:
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RLS - recursive least squares filter  

 ( ), consider the error

Define:

Then we have

To minimize the , we can make sure
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estimate  

We need derive the expression to update , which should be easy to 
compute，then we can update 

We define 

We know the initial value, ,  and

With Woodbury matrix identity

With Sherman–Morrison formula

Where 

Therefore, we can define a vector  computed based on known 

Notice

Therefore, we have
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update  

Expression to update the vector   based on the known 

update  

Optional, define a scalar , then

because ,  so 
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1ST

2nd

3rd

4th

Summary  

calculation order:

Initialization: given value for , set 

where we can choose , to ensure the algorithm is stable
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